Michael Debellevue and Ekaterina Kryuchkova Fractal Behavior of the Fibonomial Triangle Modulo Prime p, Where the Rank of Apparition of p is p + 1, Fibonacci Quart. **56** (2018), no. 2, 113–120.

Abstract

Pascal's triangle is known to exhibit fractal behavior modulo prime numbers. We tackle the analogous notion in the Fibonomial triangle modulo prime p with the rank of apparition $p^* = p + 1$, proving that these objects form a structure similar to the Sierpinski Gasket. Within a large triangle of p^*p^{m+1} many rows, in the i^{th} triangle from the top and the j^{th} triangle from the left, $\binom{n+ip^*p^m}{k+jp^*p^m}_F$ is divisible by pif and only if $\binom{n}{k}_F$ is divisible by p. This proves the existence of the recurring triangles of zeroes that are the principal component of the Sierpinski Gasket. The exact congruence classes follow the relationship $\binom{n+ip^*p^m}{k+jp^*p^m}_F \equiv_p (-1)^{ik-nj} \binom{i}{j} \binom{n}{k}_F$, where $0 \leq n, k < p^*p^m$.