Michael Debellevue and Ekaterina Kryuchkova
Fractal Behavior of the Fibonomial Triangle Modulo Prime p, Where the Rank of Apparition of p is $p+1$, Fibonacci Quart. 56 (2018), no. 2, 113-120.

Abstract

Pascal's triangle is known to exhibit fractal behavior modulo prime numbers. We tackle the analogous notion in the Fibonomial triangle modulo prime p with the rank of apparition $p^{*}=p+1$, proving that these objects form a structure similar to the Sierpinski Gasket. Within a large triangle of $p^{*} p^{m+1}$ many rows, in the $i^{t h}$ triangle from the top and the $j^{\text {th }}$ triangle from the left, $\binom{n+i p^{*} p^{m}}{k+j p^{*} p^{m}}_{F}$ is divisible by p if and only if $\binom{n}{k}_{F}$ is divisible by p. This proves the existence of the recurring triangles of zeroes that are the principal component of the Sierpinski Gasket. The exact congruence classes follow the relationship $\binom{n+i p^{*} p^{m}}{k+j p^{*} p^{m}}_{F} \equiv_{p}(-1)^{i k-n j}\binom{i}{j}\binom{n}{k}_{F}$, where $0 \leq n, k<p^{*} p^{m}$.

