Ray Li and Steven J. Miller

Central Limit Theorems for Gaps of Generalized Zeckendorf Decompositions,

Fibonacci Quart. 57 (2019), no. 3, 213–230.

Abstract

Zeckendorf proved that every integer can be written uniquely as a sum of nonadjacent Fibonacci numbers $\{1, 2, 3, 5, \ldots\}$. This has been extended to many other recurrence relations $\{G_n\}$ (with their own notion of a legal decomposition). It has also been proved that the distribution of the number of summands of an $M \in [G_n, G_{n+1})$ converges to a Gaussian as $n \to \infty$. We prove that for any nonnegative integer g, the average number of gaps of size g in many generalized Zeckendorf decompositions is $C_{\mu}n + d_{\mu} + o(1)$ for constants $C_{\mu} > 0$ and d_{μ} depending on g and the recurrence, the variance of the number of gaps of size g is similarly $C_{\sigma}n + d_{\sigma} + o(1)$ for constants $C_{\sigma} > 0$ and d_{σ} , and the number of gaps of size g of an $M \in [G_n, G_{n+1})$ converges to a Gaussian as $n \to \infty$. We show this by proving a general result on when an associated two-dimensional recurrence converges to a Gaussian, and additionally re-derive other results in the literature.