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Abstract

A theorem of Zeckendorf states that every positive integer has a
unique decomposition as a sum of nonadjacent Fibonacci numbers.
Such decompositions exist more generally, and much is known about
them. First, for any positive linear recurrence {G,}, the number of
summands in the legal decompositions for integers in [G,,, G, 1) con-
verges to a Gaussian distribution. Second, Bower, Insoft, Li, Miller,
and Tosteson proved that in a legal decomposition, the probability of a
gap between summands, that is larger than the recurrence length, con-
verges to geometric decay. Whereas most of the literature involves one-
dimensional sequences, some recent work by Chen, Guo, Jiang, Miller,
Siktar, and Yu have extended these decompositions to d-dimensional
lattices, where a legal decomposition is a chain of points such that
one moves in all d dimensions to get from one point to the next. They
proved that some but not all properties from one-dimensional sequences
still hold. We continue this work and look at the distribution of gaps
between terms of legal decompositions, and prove, similar to the one-
dimensional cases, that the gap vectors converge to a bivariate geomet-
ric random variable when d = 2.



