Kenneth Edwards and Michael A. Allen
A New Combinatorial Interpretation of the Fibonacci Numbers Squared. Part II.
Fibonacci Quart. 58 (2020), no. 2, 169-177.

Abstract

We give further combinatorial proofs of identities related to the Fibonacci numbers squared by considering the tiling of an n-board (a $1 \times n$ array of square cells of unit width) with half-squares ($\frac{1}{2} \times 1$ tiles) and $\left(\frac{1}{2}, \frac{1}{2}\right)$-fence tiles. A (w, g)-fence tile is composed of two $w \times 1$ rectangular subtiles separated by a gap of width g. In addition, we construct a Pascal-like triangle whose (n, k) th entry is the number of tilings of an n-board that contain k fences. Elementary combinatorial proofs are given for some properties of the triangle and we show that reversing the rows gives the $\left(1 /\left(1-x^{2}\right), x /(1-x)^{2}\right)$ Riordan array. Finally, we show that tiling an n-board with $\left(\frac{1}{4}, \frac{1}{4}\right)$ - and $\left(\frac{1}{4}, \frac{3}{4}\right)$-fences also generates the Fibonacci numbers squared.

