Hùng Việt Chu, Steven J. Miller, and Zimu Xiang Higher Order Fibonacci Sequences from Generalized Schreier Sets, Fibonacci Quart. 58 (2020), no. 3, 249-253.

Abstract
 A Schreier set S is a subset of the natural numbers with $\min S \geq|S|$. It has been known that the sequence $\left(a_{1, n}\right)$, where
 $$
a_{1, n}=\mid\{S \subseteq \mathbb{N}: \max S=n \text { and } \min S \geq|S|\} \mid
$$

is the Fibonacci sequence. Generalizing this result, we prove that for all $p \in \mathbb{N}$, the sequence $\left(a_{p, n}\right)$, where

$$
a_{p, n}=\mid\{S \subseteq \mathbb{N}: \max S=n \text { and } \min S \geq p|S|\} \mid
$$

has a linear recurrence relation of higher order. We investigate further by requiring that $\min _{2} S \geq q|S|$, where $\min _{2} S$ is the second smallest element of S. We prove a linear recurrence relation for the sequence $\left(a_{p, q, n}\right)$, where

$$
a_{p, q, n}=\mid\left\{S \subseteq \mathbb{N}: \max S=n, \min S \geq p|S|, \text { and } \min _{2} S \geq q|S|\right\} \mid
$$

and discuss a curious relationship between $\left(a_{q, n}\right)$ and $\left(a_{p, q, n}\right)$.

