Peter G. Anderson

The Fibonacci Word as a 2-adic Number and its Continued Fraction, Fibonacci Quart. 58 (2020), no. 5, 21-24.

Abstract
 The infinite Fibonacci word, ...0110110101101, considered as a 2adic integer, is the limit of fixed points of a Fibonacci-like recursively defined sequence of linear functions. These fixed points, and their limit, have "remarkable continued fractions" of the form
 $$
-\frac{2^{0}}{1+} \frac{2^{1}}{1+} \frac{2^{1}}{1+} \frac{2^{2}}{1+} \frac{2^{3}}{1+} \cdots \frac{2^{F_{n}}}{1+} \cdots
$$

Previous work showed the Fibonacci word 1011010110110 . . . as a traditional number (in the Euclidean metric) between 0 and 1 (i.e., preceded by " 0 .") has continued fraction $\frac{1}{2^{0}+} \frac{1}{2^{1}+} \frac{1}{2^{1}+} \frac{1}{2^{2}+} \frac{1}{2^{3}+} \cdots \frac{1}{2^{F_{n}}+} \cdots$.

