Bob Bastasz
Lyndon Words of a Second-Order Recurrence, Fibonacci Quart. 58 (2020), no. 5, 25-29.

Abstract

The sequence of digits forming the least period of the Fibonacci sequence $(\bmod m)$ is a Lyndon word. Besides $(0,1)$, other starting sequences can form Lyndon words that have a length equal to the least period of the recurrence $d_{i+2} \equiv d_{i}+d_{i+1}(\bmod m)$. Let $S(p)$ be the set of all such starting sequences, where p is a prime. Properties of this set are described, including its cardinality, n, and the number, c, of different length Lyndon words formed by elements in $S(p)$. Considering the fraction of possible Lyndon words that are in $S(p)$ leads to the development of a parameter called the period index, λ, which is related to the reciprocal of the Pisano period and concisely defines the main properties of $S(p)$.

