Daniel Duverney and Yohei Tachiya

Linear Independence of Infinite Products Generated by the Lucas Numbers,

Fibonacci Quart. 58 (2020), no. 5, 115–127.

Abstract

The purpose of this paper is to give linear independence results for the infinite products

$$\prod_{n=1}^{\infty} \left(1 + \frac{q^n z}{q^{2n} + 1} \right),$$

where q (|q| > 1) and z are algebraic integers with suitable conditions. As an application, we derive that the ten numbers

1,
$$\sum_{n=1}^{\infty} \frac{1}{L_{2n}}, \quad \prod_{n=1}^{\infty} \left(1 \pm \frac{1}{L_{2n}} \right), \quad \prod_{n=1}^{\infty} \left(1 \pm \frac{2}{L_{2n}} \right),$$
$$\prod_{n=1}^{\infty} \left(1 \pm \frac{\Phi}{L_{2n}} \right), \quad \prod_{n=1}^{\infty} \left(1 \pm \frac{\Phi^{-1}}{L_{2n}} \right)$$

are linearly independent over $\mathbb{Q}(\sqrt{5})$, where L_{2n} is the 2*n*-th Lucas number and Φ is the golden ratio, and that

$$\sum_{n=1}^{\infty} \frac{1}{L_{2n} + a} \notin \mathbb{Q}(\sqrt{5})$$

for any $a = \pm 1, \pm 2, \pm \Phi, \pm \Phi^{-1}$.