Daniel Duverney and Yohei Tachiya
Linear Independence of Infinite Products Generated by the Lucas Numbers,
Fibonacci Quart. 58 (2020), no. 5, 115-127.

Abstract

The purpose of this paper is to give linear independence results for the infinite products

$$
\prod_{n=1}^{\infty}\left(1+\frac{q^{n} z}{q^{2 n}+1}\right)
$$

where $q(|q|>1)$ and z are algebraic integers with suitable conditions. As an application, we derive that the ten numbers

$$
\begin{gathered}
1, \quad \sum_{n=1}^{\infty} \frac{1}{L_{2 n}}, \quad \prod_{n=1}^{\infty}\left(1 \pm \frac{1}{L_{2 n}}\right), \quad \prod_{n=1}^{\infty}\left(1 \pm \frac{2}{L_{2 n}}\right) \\
\prod_{n=1}^{\infty}\left(1 \pm \frac{\Phi}{L_{2 n}}\right), \quad \prod_{n=1}^{\infty}\left(1 \pm \frac{\Phi^{-1}}{L_{2 n}}\right)
\end{gathered}
$$

are linearly independent over $\mathbb{Q}(\sqrt{5})$, where $L_{2 n}$ is the $2 n$-th Lucas number and Φ is the golden ratio, and that

$$
\sum_{n=1}^{\infty} \frac{1}{L_{2 n}+a} \notin \mathbb{Q}(\sqrt{5})
$$

for any $a= \pm 1, \pm 2, \pm \Phi, \pm \Phi^{-1}$.

