Saralee Aursukaree and Prapanpong Pongsriiam
On Exactly 3-Deficient-Perfect Numbers,
Fibonacci Quart. 59 (2021), no. 1, 33-46.

Abstract

Let n and k be positive integers and $\sigma(n)$ the sum of all positive divisors of n. We call n an exactly k-deficient-perfect number with deficient divisors $d_{1}, d_{2}, \ldots, d_{k}$ if $d_{1}, d_{2}, \ldots, d_{k}$ are distinct proper divisors of n and $\sigma(n)=2 n-\left(d_{1}+d_{2}+\cdots+d_{k}\right)$. In this article, we show that the only odd exactly 3 -deficient-perfect number with at most two distinct prime factors is $1521=3^{2} \cdot 13^{2}$.

