Kendra Killpatrick and Jordan Weaver
A Bijection for the Fibonomial Coefficients, Fibonacci Quart. 59 (2021), no. 1, 14-18.

Abstract

The combinatorial properties of the Fibonomial coefficients, defined as $\binom{n}{k}_{\mathcal{F}}=\frac{F_{n}!}{F_{k}!F_{n-k}!}$ were originally explored by Benjamin and Plott in 2008 and further examined by Sagan and Savage in 2010. Sagan and Savage gave a combinatorial interpretation of these coefficients in terms of tilings of an $(n-k) \times k$ rectangle containing a path. The proof of this combinatorial interpretation was dependent on showing these tilings satisfied a recurrence known to be satisfied by the Fibonomial coefficients and the more general Lucanomials. In this paper, we give a combinatorial proof that $F_{n}!=F_{k}!F_{n-k}!\left|S S P_{\binom{n}{k}}\right|$, where $S S P_{\binom{n}{k}}$ is the set of Sagan and Savage tilings of an $(n-k) \times k$ rectangle.

