Lawrence Somer and Michal Křížek

Second-Order Linear Recurrences Having Arbitrarily Large Defect Modulo p,

Fibonacci Quart. **59** (2021), no. 2, 108–131.

Abstract

Let (w) = w(a, b) denote the second-order linear recurrence satisfying $w_{n+2} = aw_{n+1} + bw_n$, where w_0, w_1 , and a are integers, $b = \pm 1$, and $D = a^2 + 4b$ is the discriminant. We distinguish the Lucas sequences u(a, b) and v(a, b) with initial terms $u_0 = 0$, $u_1 = 1$, and $v_0 = 2$, $v_1 = a$, respectively. Let p be a prime. Given the recurrence w(a, b), let $\delta_w(p)$, called the *defect* of w(a, b) modulo p, denote the number of residues not appearing in (w) modulo p. It is known that for the recurrence $w(a, \pm 1)$, $\delta_w(p) \ge 1$ if p > 7 and $p \nmid D$. Given the fixed recurrence w(a, 1), where w(a, 1) = u(a, 1) or v(a, 1), we will show that $\lim_{p\to\infty} \delta_w(p) = \infty$. Further, given the arbitrary recurrence w(a, -1), we will demonstrate that $\lim_{p\to\infty} \delta_w(p) = \infty$ and $\lim_{p\to\infty} \delta_w(p)/p \ge \frac{1}{2}$. We will also prove that for the arbitrary recurrence $w(a, \pm 1)$, we have that $\lim_{p\to\infty} \delta_w(p)/p = 1$.