Lawrence Somer and Michal Křížek
Second-Order Linear Recurrences Having Arbitrarily Large Defect Modulo p,
Fibonacci Quart. 59 (2021), no. 2, 108-131.

Abstract

Let $(w)=w(a, b)$ denote the second-order linear recurrence satisfying $w_{n+2}=a w_{n+1}+b w_{n}$, where w_{0}, w_{1}, and a are integers, $b= \pm 1$, and $D=a^{2}+4 b$ is the discriminant. We distinguish the Lucas sequences $u(a, b)$ and $v(a, b)$ with initial terms $u_{0}=0, u_{1}=1$, and $v_{0}=2$, $v_{1}=a$, respectively. Let p be a prime. Given the recurrence $w(a, b)$, let $\delta_{w}(p)$, called the defect of $w(a, b)$ modulo p, denote the number of residues not appearing in (w) modulo p. It is known that for the recurrence $w(a, \pm 1), \delta_{w}(p) \geq 1$ if $p>7$ and $p \nmid D$. Given the fixed recurrence $w(a, 1)$, where $w(a, 1)=u(a, 1)$ or $v(a, 1)$, we will show that $\lim _{p \rightarrow \infty} \delta_{w}(p)=\infty$. Further, given the arbitrary recurrence $w(a,-1)$, we will demonstrate that $\lim _{p \rightarrow \infty} \delta_{w}(p)=\infty$ and $\lim _{p \rightarrow \infty} \delta_{w}(p) / p \geq \frac{1}{2}$. We will also prove that for the arbitrary recurrence $w(a, \pm 1)$, we have that $\lim \sup _{p \rightarrow \infty} \delta_{w}(p) / p=1$.

