Paul Kinlaw, Michael Morris, and Samanthak Thiagarajan
Sums Related to the Fibonacci Sequence, Fibonacci Quart. 60 (2022), no. 2, 136-150.

Abstract

We investigate sums associated with the Fibonacci sequence F_{n} and the golden ratio ϕ. In particular, we study the sums $G(k)=\sum_{n=1}^{\infty} n^{k} / F_{n}$ and $H(k)=\sqrt{5} \cdot \operatorname{Li}_{-k}(1 / \phi)=\sum_{n=1}^{\infty} n^{k} \sqrt{5} / \phi^{n}$. These sums generalize the reciprocal Fibonacci constant $\psi=G(0)$. We prove the asymptotic equivalence $G(k) \sim H(k)$, and moreover, $G(k) / H(k)=$ $1+1 / 5^{k+1}+O\left((\log \phi / \pi)^{k+1}\right)$ as $k \rightarrow \infty$. We express $G(k)-H(k)$ as an alternating series, allowing us to compute values of these sums to high precision, and to prove that $G(k)>H(k)$ if and only if $k \geq 2$. We also generalize the results to their Lucas sequence analogues. As a tool, we establish a widely applicable explicit bound for polylogarithms of negative integer order.

We find explicit bounds for the integer sequences $\left\{A_{k}\right\}_{k=1}^{\infty}$ and $\left\{B_{k}\right\}_{k=1}^{\infty}$ defined by $H(k) / \sqrt{5}=\operatorname{Li}_{-k}(1 / \phi)=A_{k}+B_{k} \phi$. We also prove several results concerning the multiplicative structure of A_{k} and B_{k}. We show that $\left\{A_{k}(\bmod m)\right\}$ and $\left\{B_{k}(\bmod m)\right\}$ are periodic for every natural number m, and that the period is a divisor of $\lambda(m)$, where λ denotes the Carmichael function.

