Max A. Alekseyev, Joseph Samuel Myers, Richard Schroeppel, S. R.
Shannon, N. J. A. Sloane, and Paul Zimmermann Three Cousins of Recamán's Sequence,
Fibonacci Quart. 60 (2022), no. 3, 201–219.

Abstract

Although 10²³⁰ terms of Recamán's sequence have been computed, it remains a mystery. Here three distant cousins of that sequence are described, one of which is also mysterious. (i) $\{A(n), n \geq 3\}$ is defined as follows. Start with n, and add n+1, n+2, n+3, ..., stopping after adding n+k if the sum $n+(n+1)+\ldots+(n+k)$ is divisible by n+k+1. Then A(n) = k. We determine A(n) and show that $A(n) \leq n^2 - 2n - 1$. (ii) $\{B(n), n > 1\}$ is a multiplicative analog of $\{A(n)\}$. Start with n, and successively multiply by $n+1, n+2, \ldots$, stopping after multiplying by n+k if the product $n(n+1)\cdots(n+k)$ is divisible by n+k+1. Then B(n) = k. We conjecture that $\log^2 B(n) = (\frac{1}{2} + o(1)) \log n \log \log n$. (iii) The third sequence, $\{C(n), n \ge 1\}$, is the most interesting, because it is the most mysterious. Concatenate the decimal digits of n, n+1, n+12,... until the concatenation $n||n+1|| \dots ||n+k|$ is divisible by n+k+1. Then C(n) = k. If no such k exists, we set C(n) = -1. We have found k for all n < 1000 except for two cases. Some of the numbers involved are quite large. For example, C(92) = 218128159460, and the concatenation $92||93|| \dots ||(92 + C(92))|$ is a number with about $2 \cdot 10^{12}$ digits. We have only a probabilistic argument that such a k exists for all n.