Alexandru Gica

Congruences Modulo the Square of a Prime for Sums Containing Fibonacci Numbers, Fibonacci Quart. 60 (2022), no. 3, 243-255.

Abstract

Let $p>5$ be a prime number and let $U=\sum_{k=2}^{p-1} \frac{(-1)^{k} F_{k-1}}{k}, V=$ $\sum_{k=2}^{p} \frac{(-1)^{k} F_{k}}{k-1}$. The aim of this paper is to prove that $U \equiv 0\left(\bmod p^{2}\right)$, $V \equiv \frac{L_{p}-1}{p}\left(\bmod p^{2}\right)$ if $p \equiv 1,4(\bmod 5)$ and $U \equiv \frac{1-L_{p}}{p}\left(\bmod p^{2}\right), V \equiv$ $0\left(\bmod p^{2}\right)$ in the case $p \equiv 2,3(\bmod 5)$. We also find similar results for some general Lucas sequences.

