Lawrence Somer and Michal Křížek
Generalization of a Theorem of Bruckman on Dickson Pseudoprimes, Fibonacci Quart. 60 (2022), no. 4, 357-361.

Abstract

Let the Lucas numbers $\left\{L_{n}\right\}$ be defined by $L_{n+2}=L_{n+1}+L_{n}$ with initial terms $L_{0}=2, L_{1}=1$. It is well known that if N is an odd prime, then $L_{N} \equiv L_{1} \equiv 1(\bmod N)$. If N is a positive odd composite integer for which the above-mentioned congruence also holds, then N is called a Dickson pseudoprime with respect to the Lucas numbers. Paul Bruckman proved that if N is a Dickson pseudoprime with respect to the Lucas numbers for which $\operatorname{gcd}(N, 6)=1$, then L_{N} is also a Dickson pseudoprime with respect to the Lucas numbers. We generalize this theorem by Bruckman from the Lucas numbers $\left\{L_{n}\right\}_{n=0}^{\infty}$ to more general second-order linear recurrences.

