Benjamin Baily, Justine Dell, Irfan Durmić, Henry L. Fleischmann, Faye Jackson, Isaac Mijares, Steven J. Miller, Ethan Pesikoff, Luke Reifenberg, Alicia Smith Reina, and Yingzi Yang *The Bergman Game*, Fibonacci Quart. **60** (2022), no. 5, 18–38.

Abstract

Every positive integer may be written uniquely as a base- φ decomposition—that is a legal sum of powers of φ , the golden mean. Guided by earlier work on a two-player game which produces the Zeckendorf Decomposition of an integer, we define a related game played on an infinite tuple of non-negative integers which decomposes a positive integer into its base- φ expansion. We call this game the Bergman Game. We prove that the longest possible Bergman game on an initial state S with nsummands terminates in $\Theta(n^2)$ time, and we also prove that the shortest possible Bergman game on an initial state terminates in $\Theta(n)$ time. We also show a linear bound on the maximum length of the tuple used throughout the game.