aBa Mbirika and Jürgen Spilker

GCD of sums of k consecutive squares of generalized Fibonacci numbers,

Fibonacci Quart. 60 (2022), no. 5, 255–269.

Abstract

In 2021, Guyer and Mbirika gave two equivalent formulas that computed the greatest common divisor (GCD) of all sums of k consecutive terms in the generalized Fibonacci sequence $(G_n)_{n\geq 0}$ given by the recurrence $G_n = G_{n-1} + G_{n-2}$ for all $n \geq 2$ with integral initial conditions G_0 and G_1 . In this current paper, we extend their results to the GCD of all sums of k consecutive squares of these numbers. Denoting these GCD values by the symbol $\mathcal{G}^2_{G_0,G_1}(k)$, we prove $\mathcal{G}^2_{G_0,G_1}(k) = \gcd(G_k G_{k+1} - G_0 G_1, G_{k+1}^2 - G_1^2, G_{k+2}^2 - G_2^2)$. Moreover, we provide very tantalizing closed forms in the specific settings of the Fibonacci, Lucas, and generalized Fibonacci numbers. We close with a number of open questions for further research.