aBa Mbirika and Jürgen Spilker

GCD of sums of k consecutive squares of generalized Fibonacci numbers,
Fibonacci Quart. 60 (2022), no. 5, 255-269.

Abstract

In 2021, Guyer and Mbirika gave two equivalent formulas that computed the greatest common divisor (GCD) of all sums of k consecutive terms in the generalized Fibonacci sequence $\left(G_{n}\right)_{n \geq 0}$ given by the recurrence $G_{n}=G_{n-1}+G_{n-2}$ for all $n \geq 2$ with integral initial conditions G_{0} and G_{1}. In this current paper, we extend their results to the GCD of all sums of k consecutive squares of these numbers. Denoting these GCD values by the symbol $\mathcal{G}_{G_{0}, G_{1}}^{2}(k)$, we prove $\mathcal{G}_{G_{0}, G_{1}}^{2}(k)=\operatorname{gcd}\left(G_{k} G_{k+1}-G_{0} G_{1}, G_{k+1}^{2}-G_{1}^{2}, G_{k+2}^{2}-G_{2}^{2}\right)$. Moreover, we provide very tantalizing closed forms in the specific settings of the Fibonacci, Lucas, and generalized Fibonacci numbers. We close with a number of open questions for further research.

