John M. Campbell
Sums of Fibonacci Numbers Indexed by Integer Parts, Fibonacci Quart. 61 (2023), no. 2, 143-152.

Abstract

Consider the integer sequences $\left(F_{\lfloor\sqrt{n}\rfloor}: n \in \mathbb{N}_{0}\right)$ and $\left(F_{\left\lfloor\log _{2} n\right\rfloor}: n \in\right.$ \mathbb{N}), letting $\lfloor x\rfloor$ denote the integer part of a nonnegative value x, and where F_{n} denotes the nth Fibonacci number for a nonnegative integer n. We apply an Abel-type summation lemma to prove explicit evaluations for $\sum_{n=1}^{m} F_{\lfloor\sqrt{n}\rfloor}$ and $\sum_{n=1}^{m} F_{\left\lfloor\log _{2} n\right\rfloor}$ for a natural number m. We then apply this summation lemma to determine an analytical formula for $\sum_{n=1}^{m} F_{\left\lfloor\frac{n}{s}\right\rfloor}$, letting s denote a natural number parameter, and we demonstrate how our method may be applied to evaluate sums of the form $\sum_{n=1}^{m} F_{\left\lfloor\frac{v_{n}}{s}\right\rfloor}$ for integers $r \geq 2$ and $s \geq 1$. We also consider the problem of evaluating finite sums of expressions of the form $F_{\left\lfloor\log _{2}\left(\frac{n}{s}\right)\right\rfloor}$ for a natural number s. Much of our work is closely connected with evaluations for Fibonacci sums of the form $S(t, m)=\sum_{n=1}^{m} n^{t} F_{n}$, where t is a nonnegative integer.

