Hùng Việt Chu

A Note on the Fibonacci Sequence and Schreier-type Sets, Fibonacci Quart. 61 (2023), no. 3, 194-196.

Abstract

A set A of positive integers is said to be Schreier if either $A=\emptyset$ or $\min A \geq|A|$. We give a bijective map to prove the recurrence of the sequence $\left(\left|\mathcal{K}_{n, p, q}\right|\right)_{n=1}^{\infty}$ (for fixed $p \geq 1$ and $q \geq 2$), where
$\mathcal{K}_{n, p, q}=\left\{A \subset\{1, \ldots, n\}\right.$: either $A=\emptyset$ or $\left(\max A-\max _{2} A=p\right.$ and $\left.\left.\min A \geq|A| \geq q\right)\right\}$ and $\max _{2} A$ is the second largest integer in A, given that $|A| \geq 2$. When $p=1$ and $q=2$, we have that $\left(\left|\mathcal{K}_{n, 1,2}\right|\right)_{n=1}^{\infty}$ is the Fibonacci sequence. As a corollary, we obtain a new combinatorial interpretation for the sequence $\left(F_{n}+n\right)_{n=1}^{\infty}$.

