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ABSTRACT

In cases where computational difficulties or lack of knowledge about the functional form
of a curve preclude the use of analytical methods for determining a maximum, various search
techniques can be employed. In Bayesian decision problems, an optimal sample size is based on
a maximum expected net gain from sampling. When ENGS is plotted against a range of admissible
values of n it is often computationally difficult to determine the maximum. This paper demon-
strates how a sequential search technique based on the Fibonacci numbers can be used to deter-
mine that value with a minimum number of computations.

AN APPLICATION OF THE FIBONACCI SEARCH TECHNIQUE TO DETERMINE
OPTIMAL SAMPLE SIZE IN A BAYESIAN DECISION PROBLEM

One of the most common problems in applied mathematics is the determination of an optimal
(max, min) point on the curve of some functional relationship. Sometimes, either because of
computational difficulty or lack of knowledge concerning the functional form of the curve it-
self, it is not feasible to find this optimal point analytically. In such cases, a search
technique is a powerful tool. This paper deals with the application of the Fibonacci search
technique to the problem of determining the optimal sample size for obtaining additiomal infor-
mation in a two-action decision situation with a linear cost function.

THE OPTIMAL SAMPLE SIZE PROBLEM

In any decision problem the question of purchasing additional information is generally
approached by comparing the expected value of perfect information, EVPI, with the cost of
sampling. EVPI is also equivalent to the cost of uncertainty. Since perfect information can
never be obtained from a sample and since it is uneconomical to pay more for information than
it could be worth, an amount greater than EVPI should never be spent on sampling. Therefore,
the only size samples that would even be considered are those for which the cost of sampling
is not greater than EVPI.

For most samples, the cost of a sample of size 7n can generally be expressed as:

(D C(n) = Cy + nC,

where Cy is the fixed cost of sampling and C, is the variable cost under the assumption that the
incremental cost of each additional sampled unit is the same. The maximum sample size is there-

fore:
EVPI - Cf
(2) Npay < ————— .
o

Any sample size such that 0 £ n < 7ngx 1is therefore feasible. The problem is to determine the
value of n in this range which is optimal. We will designate the optimal value of n as n*.

The expected value of the information obtained from any sample of size n can be determined
from the expected reduction in the cost of uncertainty that could be achieved with the sample.
That is the difference between the EVPI prior to taking the sample and the EVPI after or pos-
terior to the sample. This is computed by means of an extensive form analysis or pre-posterior
analysis as described by Sasaki [3], Schlaifer [4], and others. This expected value of sample
information is abbreviated EVSI. The expected net gain from sampling, ENGS, is simply
EVSI(n) - C(n), that is, the expected value of information from the sample less the cost of
obtaining that sample.
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The optimal sample size in a decision problem is that value of n, n*, in the range 0 to
Ngax » £or which ENGS is a maximum. Whenever the cost of sampling is high relative to EVPI,
Nmax Will be reasonably small and n* can be determined by simply computing ENGS for every
admissible n. However, when the cost of uncertainty is great and sampling costs are not high,
this procedure requires a large amount of tedious computations even when performed by computer.
Therefore, shortcuts for obtaining n* are desirable. One such shortcut method would be a
Fibonacci search technique.

For the Fibonacci search technique to be effective, it is necessary that ENGS have a
single maximum value in the range O to 7 pmax . Raiffa and Schlaifer [2] have shown that, for
two-action problems with linear cost functions;, if ENGS has any positive values at all in this
range, it will have a single maximum. Consequently, the Fibonacci search technique can be
used to find the maximum value of ENGS that corresponds to the optimal sample size in a
decision problem of this type.

THE FIBONACCI SEARCH TECHNIQUE

Assume that we are looking for the maximum of a particular curve in the interval (a,b).
Then by experimentation we gather information about the curve and reduce the length of our
interval of uncertainty. In search techniques, all points of experimentation may be known in
advance (preplanned) or information gathered from previous experiments may be used to select
the next experimental point (sequential search). The Fibonacci technique is a sequential search
technique.

In searching for the maximum of f(x) on the interval (a,b) of length L we perform two
experiments as shown in Figure 1. The experiments are performed at points ¢ and d such that
the length of (a,d) = 1,, and the length of (¢,b) = l,. In order to obtain equal intervals,
we should let 1, = 1,. If x* is the true maximum in the interval (a,b), then it follows that:

1. if f(e) > f(e), z* € (a,d),
2. if f(d) > f(e), x* € (e,b),

3. if f(e) = f(d), z* € (e,d).
Case 3 would be extremely rare, and in general either 1 or 2 would occur.
1,
a o d _J
| c T b

1,
FIGURE 1. Points of Initial Experiments on Interval L

In any case, the new interval of uncertainty would be no greater than 1;. Utilizing the
Fibonacci technique after the initial two experiments, it is necessary to perform at most one
experiment to determine the next interval.

Now, let us look at -the Fibonacci numbers. For any » > 2, the Fibonaccl number,

F, =F, 1 + F,_,. The Fibonacci series for the first few values of n is:

n: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
F: 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 ...

n

If we let k be the number of experiments to be performed and L be the length of the initial
interval of uncertainty, then after Xk experiments the interval of uncertainty will be reduced
to

1

Iy = 3D

The Fibonacci technique is employed to select sequentially the specific points of experimenta-
tion.

AN ITLLUSTRATIVE EXAMPLE

As an illustration consider the regret table for a decision problem provided in Table 1
where 6 is the unknown decision parameter representing the states of nature and P (0) is the
prior distribution on 6. The EVPI that corresponds to the expected regret of the better act
is $1,050. Assume that Cy = 0 and C, = $50 per unit sampled. From equation (2), 7max must be
21 and the initial interval of uncertainty within which »n* must lie is (0,21).

Since we want our search technique to reduce this interval of uncertainty and we know that

1

Detnar = ﬁL
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where k is the number of experimental points that will be taken, we must find the smallest
Fibonacci number such that F, > 21. From the Fibonacci series above, we can see that F, = 21
and therefore k = 7. This is the maximum number of experiments that it will be necessary to
perform.

TABLE 1. Regret Table

Regret
8 P, (6) a, a,
0.30 0.70 $1500 $ 0
0.10 0.30 $ 0 $6000
Expected Regret $1050 $1800

EVPI = $1050

The procedure is as follows (the calculation of ENGS for each experiment is provided in
the Appendix):

L, = (0,21), k=7;
F F
o k=1, -5, = 13, =
L, = P LI—F7 Ly =57+ 21 =13

Our initial two points for experimentation will be the two points that are exactly 13 units
from the endpoints of the initial interval, L;. Therefore, L, is either (0,13) or (8,21).
To determine which of these possible intervals contains n*, an experiment is conducted at the
points n = 8 and n = 13. That is, ENGS is computed for these two sample sizes resulting in
f(8) = $34.77 and f(13) = -$50.65. Since f(8) > f(13), the new interval of uncertainty must
be (0,13), that is, L, = (0,13).

The next interval,
F 8
L,=7*L, =77 13 =8,

6

By the same procedure employed above, the new interval will be determined by points which are
8 units from tne endpoints of the previous interval. The two new points aren = 8 and n = 5,
and L, is either (0,8) or (5,13). It is necessary to compare f(8) with f(5) to determine
which of these two possible intervals contains n*, Since we have already computed f(8), it is
now only necessary to determine f(5), which is $97.88, ENGS for a sample of size 5. This
property of the Fibonacci search technique which, -after the initial two experiments, makes it
necessary to conduct only one additional experiment for each additional paired comparison, is
one of its great advantages.
Since f(5) = $97.88 > f(8) = $34.77, the new interval of uncertainty is L, = 0,8).
Proceeding,
L:-Fl*--L =‘5_'8=5
4 FS 3 8 4
and the new interval is either (0,5) or (3,8). Since f(5) = $97.88 > f(3) = $59.22, the new
interval is L, = (3,8).

F
=2 . =3.5-=
Ly=% *L,=%"5=3.

The new interval is either (3,6) or (5,8).
Since f(5) = $97.88 > f(6) = $80.04, the new interval is L, = (3,6).

F, 2
R RS RS

The new interval is either (3,5) or (4,6).
Since f(5) = $97.88 > f(4) = $70.93, the new interval is (4,6).

m 1
L7-f2—'LG‘_7' 2 =1.

The new interval is one umit (5,5), which is optimal.

139



to the interval (4,6).
of n,n=8, n=13, n=5,n=3,n=6, and n

L = (0,987), at most 15 experiments would be required, since F,; = 987.

140

At the second-to-last stage, where | was determined to be the interval (4,6), we had
already computed f(4), f(5), and f(6), and by comparing the three values could easily see

that n* = 5,
Figure 2 shows graphically how the original interval of uncertainty (0,21) was reduced

In order to arrive at n*, ENGS had to be computed for only six values

= 4. This is in contrast to having to compute
ENGS for 21 integer values in the original interval.

L, + +
0 8 13
L, - , -
0 5 8 13
]_‘,3 + + + —+
0 3 5 8
L, ~ . '
3 5 6 8
LS
3 4 5 6
1',5 —t—
4 5 6
FIGURE 2.

Reduction of the Interval of Uncertainty

21

The computational savings increase even more dramatically as the length of L increases.
This is easily seen by looking back to the Fibonacci series and observing, for example, that if

APPENDIX

Calculation of ENGS

Experiment #l: n =

8

Regret
P, () P(z|6) P(znB) P (B) a, a,
x = 0: 0.3 0.7 0.06 0.042 0.25 1500 0
0.1 0.3 0.43 0.129 0.75 0 6000
171 375% 4500
x =1: 0.3 0.7 0.20 0.140 0.55 1500 0
0.1 0.3 0.38 0.114 0.45 0 6000
0.254 825% 2700
x = 2: 0.3 0.7 0.30 0.210 0.82 1500 0
0.1 0.3 0.15 0.045 0.18 0 6000
0.255 1230 1080%*
x = 3: 0.3 0.7 0.25 0.175 0.95 1500 0
0.1 0.3 0.03 0.009 0.05 0 6000
0.184 1426 300%*
x = 4: 0.3 0.7 0.14 0.098 0.97 1500 0
0.1 0.3 0.01 0.003 0.03 0 6000
0.101 1500 180%*
x = 5: 0.3 0.7 0.05 0.035 1 1500 0
0.1 0.3 0.00 0 0 0 6000
0.035 1500 0*
(continued)
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Regret
6 P, () P(x|8) P(xb) P, (6) a, a,
0.3 0.7 0.01 0.007 1 1500 0
0.1 0.3 0.00 0 0 0 6000
0.007 1500 0*
0.3 0.7 0.0 0
0.1 0.3 0.0 0
0.3 0.7 0.0 0
0.1 0.3 0.0 0
Summary of Posterior Expected Regret for n = 8, X
X Decision Marginal Probability Regret
0 a, 0.171 375
1 a, 0.254 825
2 a, 0.255 1056
3 as 0.184 294
4 a, 0.101 180
5 as 0.035 0
6 as 0.007 0
7 as 0 0
8 as 0 0
Posterior Expected Regret: 615.23
Prior EVPI 1050.00
Post EVPI -615.23
EVSI (8) 434.77
C(n = 8) -400.00
ENGS (8) 34.77
Experiment #2: n =
Regret
6 P, (8) P(z|8) P(x8) P, (8) a, a,
0.3 0.7 0.10 0.007 0.09 1500 0
0.1 0.3 0.254 0.076 0.91 0 6000
0.083 135%* 5460
0.3 0.7 0.054 0.038 0.26 1500 0
0.1 0.3 0.367 0.110 0.74 0 6000
0.148 390% 4440
0.3 0.7 0.140 0.098 0.57 1500 0
0.1 0.3 0.245 0.074 0.43 0 6000
0.172 855% 2580
0.3 0.7 0.22 0.154 0.84 1500 0
0.1 0.3 0.10 0.030 0.16 0 6000
0.184 1260 960%*
0.3 0.7 0.230 0.161 0.85 1500 0
0.1 0.3 0.028 0.008 0.05 0 6000
0.169 1425 300%*
0.3 0.7 0.180 0.126 0.99 1500 0
0.1 0.3 0.006 0.002 0.01 0 6000
0.128 1485 60*
(continued)
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Regret
6 Py (6) P(x|8) P(xf) P, (6) a, a,
x =6 0.3 0.7 0.103 0.072 1 1500 0
0.1 0.3 0 0 0 0 6000
0.072 1500 0*
For z = 7 through = = 13, E(R,,) = 1500E(R,,) = 0
Summary of Postérior Expected Regret for n = 13, X
X Decision Marginal Probability Regret
0 a, 0.083 135
1 ax 0.148 390
2 a 0.172 855
3 as 0.184 960
4 a; 0.169 300
5 az 0.128 60
6 as 0.072 0
7 as 0.031 0
8 as 0.0 0
9 as 0.0 0
10 a, 0.0 0
11 as 0.0 0
12 a, 0.0 0
13 a, 0.0 0
Posterior Expected Regret: 450.65
Prior EVPI 1050.00
Post EVPI -450.65
EVSI (13) 599.35
C(n = 13) -650.00
ENGS (13) - 50.65
Experiment #3: n =
Regret
8 Py (6) P(x|8) P(xf) P,(6) a, a;
x =0 0.3 0.7 .17 0.119 0.40 1500 0
0.1 0.3 .59 0.177 0.60 0 6000
0.296 600%* 3600
x =1 0.3 0.7 .36 0.252 0.72 1500 0
0.1 0.3 .33 0.099 0.28 0 6000
0.351 1080* 1680
x =2 0.3 0.7 .31 0.217 0.91 1500 0
0.1 0.3 .07 0.021 0.09 0 6000
0.238 1365 540%
x =3 0.3 0.7 .13 0.091 0.97 1500 0
0.1 0.3 .01 0.003 0.03 0 6000
094 1455 180%*
x =4 0.3 0.7 .03 0.04 1 1500 0
0.1 0.3 0 0 0 0 6000
0.021 1500 0*
' (continued)
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Regret
G P, (®) P(z|8) P(z6) P (6) a, a,
0.3 0.7 0 0 1500 0
0.1 0.3 0 0 0 6000
0*
Summa:y of Posterior Expected Regret for n = 5, X
X Decision Marginal Probability Regret
0 a, 0.296 600
1 a, 0.351 1080
2 a, 0.238 540
3 a, 0.094 180
4 a, 0.021 0
5 a, 0 0
Posterior Expected Regret: 702.12
Prior EVPI 1050.00
Post EVPI -702.12
EVSI (5) 347.88
C(n = 5) -250.00
ENGS (5) 97.88
Experiment #4: n =
Regret
6 P, (6) P(x|8) P(xB) P, (8) a, a,
0.3 0.7 0.34 0.238 0.52 1500 0
0.1 0.3 0.73 0.219 0.48 0 6000
0.457 : 780% 2880
0.3 0.7 0.44 0.308 0.81 1500 0
0.1 0.3 0.24 0.072 0.19 0 6000
0.380 1215 1140%
0.3 0.7 0.19 0.133 0.94 1500 0
0.1 0.3 0.03 0.009 0.06 0 6000
142 1410 360%*
0.3 0.7 0.03 .021 1 1500 0
0.1 0.3 0 0 0 0 6000
0.021 1500 0*
Summary of Posterior Expected Regret for n = 3, X
X Decision Marginal Probability Regret
0 a 0.457 780
1 a 0.380 1140
2 a 0.142 360
3 a 0.021 0
Posterior Expected Regret: 840.78
Prior EVPI 1050.00
Post EVPI -840.78
EVSI (3) 209.22
C(n = 3) -150.00
ENGS (3) 59.22
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Experiment #5: n = 6

Regret
8 P, (8) P(x|6) P(x6) P, (8) a, as
z =0 0.3 0.7 0.12 0.084 0.35 1500 0
0.1 0.3 0.53 0.159 0.65 0 6000
0.243 525% 3910
x =1 0.3 0.7 0.31 0.217 0.67 1500 0
0.1 0.3 0.35 0.105 0.33 0 6000
0.322 1005% 1980
x = 2: 0.3 0.7 0.32 0.224 0.88 1500 0
0.1 0.3 0.10 0.030 0.12 0 6000
0.254 1320 720%
xr = 3: 0.3 0.7 0.19 0.133 0.96 1500 0
0.1 0.3 0.02 0.006 0.04 0 6000
0.139 1440 240%
x = 4: 0.3 0.7 0.060 0.0420 0.99 1500 0
0.1 0.3 0.001 0.0003 0.01 0 6000
0.0423 1485 60%*
xr = 5: 0.3 0.7 0.01 0.007 1 1500 0
0.1 0.3 0 0 0 0 6000
0.007 1500 0*
x = 6: 0.3 0.7 0 0 1500 0
0.1 0.3 0 0 0 6000
0*
Summary of Posterior Expected Regret for n = 6, X
X Decision Marginal Probability Regret
0 a, 0.243 525
1 a, 0.322 1005
2 a, 0.254 720
3 a, 0.139 240
4 a, 0.042 60
5 a, 0.007 0
6 a, 0 0
Posterior Expected Regret: 669.96
Prior EVPI 1050.00
Post EVPI -669.96
EVSI (6) 380.04
C(n = 6) -300.00
ENGS (6) 80.04
Experiment #6: n = 4
Regret
8 P, (8) P(x|8) P(xB) P () a, a,
z =0 0.3 0.7 0.24 0.168 0.46 1500 0
0.1 0.3 0.66 0.198 0.54 0 6000
0.366 690%* 3240
r =1 0.3 0.7 0.41 0.287 0.77 1500 .0
0.1 0.3 0.29 0.087 0.23 0 6000
0.374 1155% 1380

144 (continued)
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Regret
6 P, (6) P(z|8) P(xh) P, (6) a, a,
r =2 0.3 0.7 0.26 0.182 0.92 1500 0
0.1 0.3 0.29 0.015 0.23 0 6000
0.197 1380 480%
x = 3: 0.3 0.7 0.08 0.056 1 1500 0
0.1 0.3 0.0 0 0 0 6000
' 0.056 ' 1500 0*
x =4 0.3 0.7 0.01 0.007 1 1500 0
0.1 0.3 0.0 0 0 0 6000
0.007 1500 0*
Summary of Posterior Expected Regret for n = 4, X
X Decision Marginal Probability Regret
0 a, 0.366 690
1 a, 0.374 1155
2 a, 0.197 480
3 a, 0.056 0
4 a, 0.007 0
Posterior Expected Regret: 779.07
Prior EVPI 1050.00
Post EVPI -779.07
EVSI (4) 270.93
Cn = 4) -200.00
ENGS (4) 70.93
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SIMULTANEOUS TRIBONACCI REPRESENTATIONS

RALPH GELLAR
North Carolina State University, Raleigh, NC 27607

1. INTRODUCTION AND DEFINITIONS

The two-sided sequence {t,,}‘fm of Tribonacci numbers is defined by t_; = 0, ¢, = O,

t, = L and the recursion ¢,43 = tn+2 + tns1 + tn. A Tribonacci representation of the integer
a is an expression q = IK;t; where {K,,}fm is a finitely nonzero sequence of integers.

This paper attempts to generalze to Tribonacci representations some of the results of
Robert Silber's and my joint paper [7], "The Ring of Fibonacci Representations.'" I advise
reading that paper before this one because, among other reasons, there one can see how much
can be done in the order 2 case.

It is a pleasure to acknowledge here the extensive and essential assistance that Professor
Silber gave me in working on the present paper.
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