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SECONDARY FIBONACCI SEQUENCES

PAUL J. CAMPBELL
Beloit College, Beloit, Wisconsin
and
CHRISTOPHER MOELLER
North American Life and Casualty, Minneapolis, Minnesota

1. PRELUDE: AN ENTERTAINMENT

DRAMATIS PERSONAE: Leonardo of Pisa and Edouard Lucas, well-known experts in the mathematics
of deterministic modelling of the growth of animal populations. :

SCENE: Circa fall 1974; lounge of a computing center, where they are whiling away the time
as they wait for the number-cruncher to test their recent conjectures.

LEONARDO: I've made some new discoveries in the realm of our favorite common pastime, the
Fibonacci numbers (as you so flatteringly refer to them), together with some conjectures I
can't yet settle. Maybe we can go over it all together and see what we can come up with.

EDOUARD: Splendid! And what have you to reveal?

L: Let me fill you in on the background first. One fine day last summer I was hitchhiking.
A ride with a boorish driver precluded good conversation; so, left to my own devices, I let
my mind drift to mathematical games for amusement.

E: I suppose that is conclusive proof that you are mathematically inclined, for who else
would choose such a pastime?

L: Who knows? At any rate, Fibonacci numbers are ideally suited for such sport, as you well
know. By chance, I happened to add 13 and 987, and got 1000.

E: In other words, F, and F,, = 1000—0K, what's remarkable about that?

L: As you well know, fdouard, the journey to mathematical discovery often starts with notic-
ing something unusual, however small and insignificant it may seem to be. I paused to con-
sider the roundness of the sum, and then proceeded to wonder: if F, + F,. = 1000, then

Fo + F,, =27

<8 17

E: Well, 21 + 1597 = 1618. A fine coincidence! Those are the first four digits of the
golden ratio ¢ = 1.618... .

L: I tried further pairs—let me summarize the results for you on the blackboard:

Fg+F, = 5+ 377 = 382 ¢"? = .3819...
Fg + F,, = 8+ 610 = 618 ¢! = .618...
F, + F,g = 13 + 987 = 1000 6% = 1.

Fg + F,, = 21 + 1597 = 1618 ¢! = 1.618...
Fg + Fg = 34 + 2584 = 2618 $% = 2.618...

By forming F, + F I was getting 1000 times the three-decimal-place approximation of ¢”*-1.

n+9?

E: Not only that, but your new sequence was also a Fibonacci sequence.

L: Exactly! That was my next observation, and it seemed the more important property to
investigate, since it seemed more susceptible of generalization. And generalize it does!
Adding any Fibonacci sequence to itself at a constant index difference always produces
another Fibonacci sequence. I decided to call the Fibonacci sequences generated in this
fashion secondary Fibonacei sequences. 1 started investigating which Fibonacci sequences
come out as secondary sequences. Let me show you.

E: Say, that's really interesting! But hold on a moment—Ilet's use the blackboard to make
a "formal" record of our brainstorming. After all, if this discussion amounts to anything,
you should write a paper about it for the Fibonacci Quarterly.

L: I suppose you're right, but writing it all up in a paper isn't nearly as much fun as
discovering it all in the first place. 1In fact, I hate writing papers—all that writing,
rewriting, and rewriting again, and I'm still never satisfied with the final product.
Besides, I expect you'll be making some contributions in the course of the discussion. If
they prove valuable, you write the whole thing up. You're always dashing off mathematical



notes and popular articles all over the place. For you this would be just another half-day's
work.

E: It's hardly time to argue about that just yet! We'll cross that bridge if we come to it.
Meanwhile, let's keep a record anyhow. Now tell me, which Fibonacci sequences turn up as
secondary sequences, anyhow? . .

2. BASIC PROPERTIES OF SECONDARY FIBONACCI SEQUENCES

Definition: A (positive)(Fibonacci) sequence {T,}, ,, or T for short, is a doubly infinite
sequence which satisfies the recursion relation
Tner =T + Tna

for all neZ and for which there is an n; €7 such that all terms with index greater than 7,
are positive. We will be especially interested in integer sequences.

By definitional convention we are excluding from consideration the constant zero
sequence, as well as sequences which are negative for every index exceeding a certain integer.

Proposition 1: Any Fibonacci sequence contains a unique pair of comsecutive terms a and b,
both positive, with either a = b or 2a < b.

Proog: See [1, p. 43].

Deginition: A Fibonacci sequence T is in standard format if it is labelled so that T, = a,
T, = b, with a and b as specified in Proposition 1. We will write T = (a,b). A sequence for
which a and b are relatively prime integers is said to be primitive. Two special sequences
are distinguished: the Fibonacei sequence F = (1,1) and the Lucas sequence L = (1,3). As is
well known, the terms of a sequence T in standard format are given by

T = aF,_ , + DbF _,

for any ne Z. i

Definition: Two sequences T, U are equal, written T = U, if T, = U, for every neZ. They are
equivalent, written T = U, if there is a k such that T, = U,,; for all neZ.

Deginition: The Lucas analogue V(T) of a Fibonacci sequence T is the sequence defined by
V(T)n = Tn+1 + -Tn—la

and V(T) may be denoted simply by V when no confusion would result. Note that V may fail to

be in standard format.

Proposition 2: (i) V(T) is a Fibonacci sequence; (ii) V(V(T)) = 5T; (iii) V(F) = L.

Proog: Left to the reader.

We now generalize the notion of the Lucas analogue of a sequence to embrace a whole
family of sequences.

Definition: For r > 0, the rth secondary sequence of a sequence T, denoted "T, is the sequence
obtained by adding T to itself at a constant index difference r:

T =T +7T,.

We will say that "T is r-secondary from T. Note that V(T) is not, strictly speaking, a secon-
dary sequence, though V, = 27;_1 makes V = 2T,

n+r

Pnapob&iion 3: A secondary sequence of a Fibonacci sequence is a Fibonacci sequence.
P/LO(Jﬁ-' r.Tn + rTn_l = (Tn+r + Tn) + (T, ~1l4r + Tn—l) = (Tn-o-r + Tn—1+r) + (Tn+r + Tn)
= Thyr4r+t 7T = rTn+l‘

n+1l
We give here in table form the first twelve secondary sequences of F (taken from [11,
p. 17]), in hopes of inspiring the reader to discover patterns before reading further.

F r= 1 2 3 4 5 6
0 1 1 2 3 5 8
1 2 3 4 6 9 14
1 3 4 6 9 14 22
2 5 7 10 15 23 36
3 8 11 16 24 37 58
5 13 18 26 39 60 94
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F r= 1 2 3 4 5 6
8 21 29 42 63 97 152
13 34 47 68 102 157 246
F r= 7 8 9 10 11 12
-1 4 7 12 20 33 54
1 9 14 22 35 56 90
0 13 21 34 55 89 144
1 22 35 56 90 145 234
1 35 56 90 145 234 378
2 57 91 146 235 379 612
3 92 147 236 380 613 990
5 149 238 382 615 992 1602

The sequence F = 'F has often been cited as occurring in nature, and the occurrence of
L = ®F is occasionally mentioned as well (see, e.g., [7, pp. 81-82]). What may perhaps be
surprising is that 2F = 3F, 3F = “F, and (1,5) = 5F have been observed as the parameters of
sunflowers grown by Don Crowe, a geometer at the University of Wisconsin [5].

Our indexing of secondary sequences was arbitrary. Generally, a secondary sequence is
not in standard format, and it is necessary to 'backspace' by several index numbers to arrive
at standard format. It turns out to be important for our purposes to keep trace of the index-
ing—if it were not, we could conveniently identify all equivalent sequences. In Section 4
we will specify exactly the amount of backspace for each secondary sequence.

Proposition 4: F, + V, ., t odd
2ty o

n
Ly * T4t t even

Proogg: The first proof bf these well-known identities seems to be due to Tagiuri [12],
according to Dickson [6, p. 404]. Both are cited by Horadam [8], who furnishes a more acces-
sible proof. In any case, the proof is straightforward, and we leave it to the reader rather

than reproduce it here,.
It is not possible to find so simple an expression for ”T when r is odd.

Deginition: The conjugate T of a sequence T in standard format is the sequence defined by

_ 5 (-1)"T.,, T#F
T, =

(T,, = -1)"™r,, T=F

For a_sequence T not in standard format, let T, = U,,;, U in standard format. Then define
T, = U,,y- Note that F =F, L = L, and no other primitive sequence is self-conjugate.

Proposition 5: (i) T is a Fibonacci sequence; (ii) T = Ty (iii) V(T) = 2p 2 27 = V({T);
_ F, » T, t odd — _
(iv) ?*T = _ 3 (v) *Pro= 2T
L, =T, t even
Proo4: Left to the reader.
Theonem 1: Let S and T be Fibonacci sequences. If S = 'T, then

for rodd: "§ =L, T

5F2 + T, t odd
(Ly + 2)T = 4

Li « T, t even

for r even, r = 2¢t: 7S

Proof: r odd. We do the case S £ F, T £ F, S in standard format. For n even,
"5y = Spart Fp o= (-S4 (-1)7S.,
= =Sa.p+ S = ~Tanspr +Tn) + (T + Topniy)
=T p4p = T-p + LsT_,,, by Proposition 4
=L,* (-1)'T.y =1L, * T,.
The proof for n odd is analogous, as are the proofs for the other cases.

2t = 2 - cp2
F, = V) = FoV(V = 5F7 .
p o= 2¢. 2tg = 2t(2tpy = (F, ) = FLv(V(D) SF; T, t odd
ZtLt « T = Li « T, t even



Example: T = (1,7), § = °T = 2(11,36). Then T = (5,11), S = 2(14,39), °5 = 76(5,11) = L,

Proposition 6: 3T = 2T,
Proof: T, + T, =a+ (a+2b) =2(a+Db), T, +T5=>0b+ (2a+ 3b) =

of taking the rth secondary sequence of a sequence 7.

Definition: YT = "T/[L, + 1 + (-1)"], with the terms of Yrp being allowed to be fractional.

Note that 1/2¢7 =T/(L,, + 2), by Proposition 5.

2(a + 2b).

The results of the theorem suggest the definition of an inverse to the operation 7(

)

T.

Pﬂopoé&t&on 7: (i) YT is a Fibonacci sequence; (ii) Urerqy = I'(]'/:"I') = T; (iii) Up to equiva-

lence, /*T is the only sequence whose rth secondary sequence is T.
Proof: (i) Neither (7) mor "( ) disturbs the recursion relationm.

(ii) r odd.

|
N
3

l/I"(I’T) =

I. 7 = T, by Theorem 1.

YL, +2) 2 BF, + V/(L,, +2) =

ki

)l

*(Mrr) =

!
=
e
/\w

Ly

b
I

= 2t, t odd.
1/21;( ZtT)

Zt(l/ZtT)

F? « 5T7/5FF =T

= 2t, t even.

=
I

I/Zt( ZtT)

YT/, +2) = ®L, - T/L} =L, *

2612ty = 28 (2T /(L,, + 2) = L(L, « T)/I2 =T

]

(iii) Suppose 7§ = TS’

Example: 3(1,7) = (10,29), 1/3(10,29) = (1,7), /7(10,29)

i

(Q 184
29°729

A major effort of the remainder of the paper is to determine exactly what integer

sequences are secondary from other integer sequences.
3. STANDARD-FORMATTING SECONDARY SEQUENCES
Definition: Let I be the 2 x 2 identity matrix and let
0 1
P:
1 1
Note that if T is a Fibonacci sequence, then

(Tp_ys T,) = P = (T, Trz+1)’

where the ordered pairs are considered as 1 x 2 matrices. Also,

jal

o e F,
5
fm Frn+1

Theonem 2: Let S = (e,d) and T = (a,b) be in standard format. Then some multiple of an
equivalent of S is secondary from T if and only if there exist positive integers A,r and a

5FZ « T

P2

Lt . T/Li

=
-JL), which by the line above is just T.

=T

Zt(Ztﬂ_’/(LZt + 2)> = Zt(FtV)/(LZt +2) = 2‘t(Ft V)/(5Ff)

=T

T. Then Y7("$) = 1%73') = V*T, so that § = 5’ =77,

nonnegative m < » + 1 such that one of the following equivalent conditions holds:

(1) Me,dP" = (a,b)(T + P7)
(11) xe = (D" [(-FTpiy + Fpy1Tps1) + (-Fpb + F,,12)]
= CD"[FTpsy + By 1Tpyy) + (Ba+ F D))

T 00000
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(111) Ae = Tpopmer + (-1)" (@Fp 4y - DFn)
M = Fp_pyz + (-7 (-aF, + bF,_;)

(1v) e = alFp_p 3+ (C1"Fpyy}l # DIF._, = (-1)"Fp]
M = alF,_, - (-l)mFm] + blFp ey + (_l)mFm-l]

Proog: If the relation (i) holds, it exhibits a A-multiple of an equivalent of S as a
secondary sequence of T.

Conversely, suppose some multiple, say by A, of an equivalent of S arises as a secondary
sequence, say the rth, of T. Then ("Tl,".’l‘z) =X * (Sp41+Sm+2) for some m. But

(@,b) (T + P7) = ("T},"T,) = A(S,,1,5,,,) = (c,d)P".

The quantity m represents the number of places it is necessary to backspace ("Tl,"TZ)
to arrive at standard format. We must show that 0 <m < r + 1.

Since T is in standard format, 0 < T, < T, < T, < T,,,, for n > 2, so
0<T™, =Ty + Tpyy £ Ty =T, + Tpyy, for » > 0. Hence, m > 0.

To see that m < » + 1, backspace (r +2) places: ("TI,I'TZ)P""2 = (Tp-q +T2;, T + T).
Since T is in standard format and r > 0, exactly one of T.,_; and T-, is negative. If T Z F:
r even makes T_n.; + T-1 negative, while r odd and » > 3 forces 7., + I, negative; r = 1
yields Top-y + T3 > T_, + T, > 0. In any case, we have certainly backspaced too far. The
case for T = F is analogous.

Fm-l En
(1) = ({di). Ae,d)P™ = (Ae,\d) , while (a,b)(I + P7)
: Fm Fm+1
1 0 Fn_y F,
= (a,b) + = [(1 + F,_1)a+ bF,, aF, + b(1 + F,_1)].
0 1 Fr Frniy

Now, (i) asserts that these quantities are equal, so Cramer's Rule yields

Th41+a Fp Frnoi Tp41 ta

Ac = A Ad = A
Toy2 b Fpyy F, T.., +b
Fm-l Fm 2 m

4= =By 1Bner - By = (D)
FM Fm+1

and (ii) follows.
(ii) = (4ii). This implication is based on the reduction

B lpso ¥ BTy = =Fn(Tpyy + 1) + (Fp + Fply) Tosa
=By - BT, +E T+ B 1 Thi
=B Tesr - BT

= (-1)(-E, T, + FuT.).
Repetition for a total of m times yields
-FmTz-+2 + Fm+lTr+1 = <_l)m (-FOTr'-i-Z -m + Fl Tr+l-m) = (—l)mTr+1-m'

Thus,

Ae = L [G-D)"Tpyy om+ @Fpyy = bFpl = Ty + (-1)7 (aFp 4y = BF,).

A similar argument gives t‘he corresponding expression for Ad.

(iii) =» (iv). The equations in (iv) can be obtained directly from (iii) by use of the
identity T = aT, + bT,

n+2 n+1°

(iv) = (1). We verify the first coordinate of the matrix equation (i) using the substitution
(iv). The first coordinate of A(e,d)P™ is



{alfy oy + (CD"Fpyy] + DIF, = (-DTE,} » By
+ {alF,_,, - (<1)"F,1 + b[F, _, ., + (-1)"F,_,} + F.
= alF pFpoy + CD"F Froy + F,_F = (-1)7F]]
+ blF, _,Fp_ - D'F,Fp_y +E, _ F. + (-1)"F,_,F,]
=a(l poyFpoy * FopFy + 1) + B(F, Fp g 4 By Fr)
a+ Fn(afyp_m + bF_pn41) + Fy_y(@F, _,_, + BE,_ )
Ty + Elromert By Tr i

Tl + (Fm-l + Fm-Z)TP'-m+2 + Fm—lTr-m+1

Ty + B Tpomest 0T g

The last three lines comprise a reduction, which iterated for a total of (m-1) times
yields

Tl + FlTr—m+2+m-1+ FUTr-m+1+m-1= Tl + Tr+1’
the first coordinate of (a,b) (I + P7).

Coroflanry: Some multiple of an equivalent of a sequence S = (¢,d) in standard format is
secondary from F if and only if there exist positive integers A,r and nonnegative m < r + 1
such that

Ae = Fr+1 -m ¥t (_l)mFm—l

Ad = F,

r+2-m

- (—l)mFm -2

Examination of the equations of the corollary makes it clear that stronger constraints operate
on m than just 0 <m < r + 1. In the next section we pin m down precisely.

L. BACKSPACE OF A SECONDARY SEQUENCE

Throughout this section, m will denote the backspace necessary to bring the sequence *T
into standard format, where T = (a,b) is in standard format and primitive.

Definiticn: The eccentricity of a sequence T = (a,b) in standard format is the quantity

e = bla. 0, >3
Proposition 8§: For r = 2, m = 1, T=For T=1
2, 2 <eg <3
For » = 3, m = 2,

Proof: The terms 2T_,, ..., 27, are given, respectively, by 3b - 4a, 3a - b, 2b - a, 2a + b,
and a + 3b.

If 3a < b, 2(2a + b) = ba+ 2b < a + 3b, som

If 2a < b < 3a, 3a-b >0 and 2(3a - b) = 6a

= 2b

The reader may confirm that m = 1 for T = F and T = L. The case r = 3 has already been settled
(implicitly) by Proposition 6.

0.
2b <3 ~-2b=b <b+ (b - 2a)
2 < 2b - a, som = 2.

!

Theonem 3: For r = 2t, t-1, ¢ >3 and ¢ odd
m= < t, t evenor ' = For T =1
t+ 1, 2 < g <3 and ¢t odd

Proog: From Proposition 4, Proposition 8, and the fact that V, = 21}_1.

As we would expect by now, the case of r odd offers greater challenge and, as it turns
out, some surprises.

Thegrem 4: For r > 3, r odd, r = 4k + 1 or r = bk + 3, k > 1. Define A, = Fyp ., = F._pi_2>

By = Fpgk-3 t Fpygs and o, = B,/4,. Then

2k, € < Oy
m=<2k+1,e=10r¢€=aq,
2k + 2, 2 <€ < qa,

RinE X X X X B



Proog: Exclude at first the possibilities T = F or "T Z AF. We examine the case of m even,
arriving at the results of the theorem; then we show that m cannot be odd. Finally, we
readmit F to the arena and distinguish cases to arrive at the remaining clause of the theorem,
which allows for odd m.

Case 1: T # F, "7 # F. The equations (iv) of Theorem 2 give an exact expression for
T = (Ae,Ad) in standard format. Proposition 1 reminds us of the conditions Ac¢ and Ad must
satisfy in the event that "T is not equivalent to F:

Ac > 0, or

(*) alFp oy + (1)"Fpyq] + bIF,_, - (-1)"F,]1 >0
2)e < M, or
(*%) 2[a(F, poy - D"Ey,) + b(E_, - (-1)"F,)]

<alFp_, = (CD)"F] + blFp_pyq + (C1)"Fp_4].
Subcase, m even. Let © = m - 2k, so that m = 2k + 7, ©7 even. Since 0 <m <r + 1,
-2k <1 £ r - 2k + 1. Equations (*) and (**) now take the forms
(*e) a(Fygp-g-1 % Fogugar) > D(Fpyy = Foogpoy)
(**e) allppiars ¥ Bookogo3) <DPFpugyr = Bogk-i-2)

Ifr-2k+1>%1>2, then-1<r-2h-71<4h+3-2k-41<2k-727+3<2k+1c<
2k + 2, and 2k + © > 4, so the R.H.S. of (*e) is positive. Also, T # F implies 2g < b.
Consequently,

a(Fp_op-; + F2k+1;+1) > b(F2k+1 - Fpgg-qg) > 2a(Fy ;- Fp_k-i)
and hence
Fpook-i-1% Fopqgar > 24 = Frogroy)

or, after simplification and use of the recurrence relation, F,.zx-;+2 > Fox4i-2.
The subscripts are positive, so we must have r - 2k - 2 + 2 > 2k + 7 - 2 or
27(r - 4k) + 4 < 7, or 7 < 7/2. By hypothesis, 7 is positive and even, so ¢ = 2 and

m= 2k + 2.

If -2k <71 <0, then 2k + 2 +3 >3 andr -2k -7 -3>r-2k-3= (4bk+1) -2k -3
=2k - 2 >0, so the L.H.S. of (**e) is positive. As a result, the R.H.S. must also be posi-
tive, yielding Fyp4; 42 > Fp_2x-;-2. The subscripts are positive, so we must have
2k + 1 +2>»r~-2k~-1 -2, 0r 20 > (r - k) - 4 > -3, or © > -3/2. By hypothesis, 7 is
nonpositive and even, of ¢ = 0 and m = 2k.

The upshot so far is that if m is even, it can only take on the values stated in the
theorem.

In case m = 2k + 2, the R.H.S. of (*e) is positive, so dividing both sides by
a(I}k+2 - F}-zk-z) retains the sense of the inequality and yields

€=bla< (Fpogk-3 + Foeas ) (Fypyy = p-2k-2) = Op-

In case m = 2 , the L.H.S. of (**e) is positive, so dividing both sides by
a(Fy, 42 = Fp_gx-5) retains the sense of the inequality and yields

€ =Dbla> (Fr-ak-3 * Fpp3)/ (Fogya = Fp_gg-2) = On.
Subcase, m odd. The equation (**) becomes
(*%0) , 2{a(Fp oy = Fpy1) + DFp_p + F)]l < aFp gy + Fn) + D(Fp_ iy = Fno1).
After simplification and use of the recurrence relation, we have
a(Fm+3 - Fr—m-3) > b(Fr-m—z + Fm+2)'
Since » + 1 >m > 0 and » > 5, the R.H.S. is positive. Since T # F, b > 2a, and so

a(Fp4s = F ) > 2a(Fp_p_yt Fpyp) >0

r-m-3

and
Fm+3 = fr-m-3 > 2<Fr-m—2+ Fm+2)'

So after simplification and use of the recurrence, -F ., - F,_
such positive subscripts.

Case II: T =F, 'T# A\F. We have a=b = 1.

n > 0, which is impossible for




Subcase, m even. Equation (**) becomes Fj, .3+ Fp,_,_3< Fp,,, - F,

»-m-2s which gives
< 0, which is impossible for such positive subscripts.

+

F
fr-m-1
Subcase, m odd. Equatioms (*) and (**) become Fp_p_y - F, q + B + Fp > 0, so
Foome1 = Fno1 > 05 Foyz = Foomo3 > Fa_pogt Fpyg, 80 Fpyy = Fu_p_oy > 0. The subscripts being
nonnegative, these inequalities require that m+ 1 >r -m-land»r -m+ 1>m- 1, or

r/2 -1 <m< r/2 + 1. The only integers between the bounds are (r-1)/2 and (r+1)/2, only
one of which is odd. If r = 4k + 1, (r+1)/2 = 2k + 1 is odd; if r = 4k + 3, (r-1)/2 =

2k + 1 is odd. 1In either case, m = 2k + 1.

fm+1

Case III: T # F, T = )\F for some ).

Subcase, m even. Here we have now Ac¢ = Ad > 0 and the corresponding substitute for (%)
and (**):

a(Fr—m-l + Fm+1) + b(Fr-m - Fm) = a(Fr-m - )+ b(Fr-m+1 + Fm-—l) > 0.

Simplification gives a(-F,_,_, + F,,,) = b(Fn_p-1 *+ Fp4y), which is positive since the sub-
scripts on the R.H.S. are positive. Using the fact b > 2a, and dividing by a, we get

Fovy = Fpomoy > 2(Fp_p_1+ Fpyy1), which leads to the contradiction -F,_; - F,_,,; > O.

Subcase, m odd. The equations of (iv) of Theorem 2 become
a<Fr—m-l - Fm+l) + b(Fr-m + Fm) = a(Fr'—m-Z + Fm) + b(Fr-m-l + Fm+1) > 0.
Simplification gives a(Fp_,_; + Fp42) = b(~Fp_p_1 + F,41). The subscripts on the L.H.S. are,
respectively, nonnegative (m odd implies m < 2k - 1) and positive, so that -Fn_,_; + Fp4; > 0;

and using the familiar b > 2a and dividing by a in the original inequality gives
Fomoo ¥ Fny2 > 2(Fpe1 - Fpop-y). Simplification reduces this to Fn_,4; >F,_;. We are now

in the situation of Case II, m odd, so we may conclude m = 2k + 1. Here, b/a = Bp/A, follows

without difficulty.

Case IV: T = F, TPz AF. We may follow Case III to the points
-m=-1 + Fm+1);
modd: alF._p_2 + Fpi2) = b(=Fo_p_1+ Frpq).

m even: a(F,_,_, = Fns2) = b(F,

Here in Case IV we have a = b = 1:

meven: Fn_p_2= Fpnyo=Fpom-1+ Fns1, so F, = F._, and either r = 2m (impossible:
r is odd); m = 1, » = 3 (impossible: m is even); or m = 2, r = 3 (excluded by hypothesis).
m odd: Foopmeo ¥ Fpyp = =Fp_po1+ Fryy, 80 Fu_py + F, = 0, and the restriction

0 <m<r+ 1 forces the contradiction m = r = 0

Conollary: For r = 4k + 1, k > 1:

+ F

ez s lim o, = £33 =2 300,

r=4k +1 2

k »o

- Ay = 2Fy, By = 2F,

For r = 4k + 3, k > 1: A, = Fy

K

» Bp = Fpp + F

peas s Lm0 = 26 + 1) = 5.236.

k +o

(The number ¢ is the golden ratio.) Moreover, because of the recurrence relation for F, each
of the sequences {a,; 41}, {04x+3} consists of every other term of the respective Farey
sequences {(2F, + F,,,)/2F,}, {(F, + F,,3)/F,}.

Proog:
Ages1r = Foxwn = Fugsr-ok-2 = Forwg = Foxon = Fopyy T Py = Fppoy = 20y

Bies1 = Fursr-2k-3 ¥ Foxes = Fyp g ¥ Fypyp ¥ Fypyy = 2841 + Fyp + Py

= 3Fy + 2Fy _ t Py = 2Fy + 2Py +t Fy oy = 2Fy + Fyly-
. X 1 _
Lim oy yy = Un(Fy + By yp) /2y = 1+ 307 = (0 + /2.
Ak+s = Fopwo = Fagwaook-2 = Foran = Fypy = Fype e
Bipws = Fagwsoon-3 ¥ Fopasy = Foo + Fopys’

lim @, ,, = Um(F, + Fp  3)/F, =1+ ¢ =2(¢ + D).

k + k+=

~~-~eer"
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(In each case the existence of the limit is guaranteed because the sequence is monotone and

bounded.)

We present below a table of the Farey sequences which contain the values o,. The paren-
thetical entries, consisting of the values of the Farey sequences intermediate between values
Op, form their own sequence which we shall call B,:

Defdnition: Buyyy = (Fyo_y + Fpp) /Py g5
Buxss = QFypuy + Fpp i3 )/2Fy 41 -

We even examine what the calculated values of o, and B, would be for » = 3 and r = 1, even
though the theorem above does not extend to these.
In fact, we can extend the definition of the o's and B's as follows:

Definition: o,, = By, = 3, t odd;

Q,y = 3, Byx = 2, T even;
a, =3, By =2,0,=2, 8, = 2.
r...1 3,5 7 11 13 15 17 19 ...
|
4 1 5 k) 14 23 37 60 97 157
7012 4 6 10 16 26 42 gg - T (@ +3)/2
2 2 ! 4 6 10 16 26 42 68 110
+T 01T 1 2 3 5 8 13 a1 v T o20+D

Thus, we have the sequences formed as follows, from first element on:

. 546 5 14 5 16 5 37
a’ 2’ 3’ 3, 3, 2’ 3’ l’ 3, 6’ 3’ 3, 3’ 16’ 3,

. 459 , 10 ;23 , 2
B: 2,3,2,2, 7,3, 72,5, 3, 15 2, % 3, .

The results of this section so far may be summed up in saying that m depends only on »r and €
and is uniquely determined once they are specified. The same is true for the quantity d/ec.
Easy algebra applied to the equations (iv) of Theorem 2 yields a general formula for d/c; we
rename this quantity 6,(€) to indicate the independent variables on which it depends. It is
convenient, however, to express it in terms of the variable m also, which itself depends on r
and €.

Proposition 9: The eccentricity 6,(€) of TT, where € is the eccentricity of T, is given by
m
[Fp_m - (-l)mFm] + [FI'-M+1 + (-1) Fm-l]

Sn(e) = -
[Fr-m + (-l) Fm-(-l] + [Fp_m - (—l)mFm]
Conversely,
Sp(E)[Fp_py + )"Fp 01 = (B, = (FD)7F,]
E =

[F:r'-m+l+ (’l)mFm_l] = 6;.(5) [Fr-m - (_l)mFm]

The function 6, is one-to-one, so that € in turn is uniquely determined by r and §,; in other
words, we may speak of the inverse function §;'.

Proof: If 8r(g;) = 6n(€,), then the corresponding secondary sequences (using left subscripts
to distinguish) 1T, 3T must be equivalent to multiples of the same primitive sequence U, so

T = kU, 3T = k,U. By Proposition 7(iii), for < € {1,2}, ¥*(;7) = Y7(k;U) = k}* U is the
only sequence, up to equivalence, whose rth secondary sequence is T. But the upshot is that
Un 7 and YTT must be equivalent to multiples of the same primitive sequence T. Hence €, = €,.

Proposition 10: e = 2 + 1/(e - 2).

Proog: To=b -a, T-y =2a-Db, T-p =2b - 3a, so €5 = (2b - 3a)/(b - 2a) = (2e - 3)/(e - 2)
=2+ 1/(e - 2).

Theorem 5: For r =1, r = 3, or » = 0 (mod 4), 6,(e) = €. Otherwise, &, maps
1-+8,

(2,06,) * (B,,»), order-preserving




apr + 1
(¢,,®) + (2,B,), order-preserving
and 6, is a bijection from {1} U (2,») into itself.

Proof: For r # 3, r # 0 (mod 4), and € # 1, € # ,, we have m even, so that the first equation
of Proposition 9 holds with the (-1)" deleted.
€ < 6, implies m = 2k + 2, if r is odd, and m = t + 1, if r = 2¢, t odd.

[Fr-m - E%] + 2[Fr-m+1 + Fm-l] F;—m-a + Fm-3
[F + Fpyq) + 2[Fp_, - F,] F -F,_,

r-m-1 r-m-2

PRS-

since §, is clearly continuous in € on (2,0,). Treatment by cases gives
Forsa t Fop 1)/ (Foppy = Fu) = (Fyepy + 2Fpp4q) = Bygss, for » = 4k + 3;
lim+5r(E) = (Fopqg + Fop 1)/ (Fygyy = Fyp) =Bugyy, for r = 4k + 1;
€2
(Fyypy + Fy_)/(F, .y = F,_)) = 3F,/F, = 3 = By, for » = 2¢, t odd.
In short, lim+6r(E) = B,. Similarly, lim §,(¢) = ®. The numerator of 0,(€) is of the form
€+2 [

e + €f, while the denominator is of the form g + €h. Now, with r given, the fact that € is
in (2,0,) determines m, so that in this interval e, f, g, and h are constant.

d 8p() = de+f _flg+h) -he+F) __fg=-he
de T de g+ fFf (g + ) Tlg+Fm?e

So the sign of the derivative of O» is constant in (2,0,). From the limits established above,
we realize that O, is increasing throughout (2,0,).

The same argument may be applied to the behavior of 8» on (@n,®).

The cases r = 1, » = 3, r = 0 (mod 4) offer no challenge.

Example: 4, € =1
_ (3e - 2)/(5 - 26), 2 <€ <23

Ss(€) = 1, e = 23

(1 +48)/(3+€), > 2%

FIGURE 1
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5. CHARACTERISTIC NUMBERS OF SECONDARY SEQUENCES
The concept of characteristic number of a Fibonacci sequence was introduced in [1] to
structure the collection of Fibonacci sequences.

Deginition: The characteristic number Dy of a Fibonacci sequence T is Dy = |72 - T, T,,.|.

Readers familiar with the elementary properties of Fibonacci sequences will recognize
that the value of D; is independent of the choice of n, so that D, is well defined.

A table of characteristic numbers of primitive Fibonacci sequences for D < 2000 can be
found in [4, pp. 42-44].

We summarize some useful properties of characteristic numbers in the following
proposition. -

Proposition 11: (i) Dyp = k®Dy; (i1) D, = 5D;; (iii) Dy = Dy.
Proog: Left to the reader.

Proposition 12: (i) A natural number n = a’b, b square-free, is the characteristic number of
a [primitive] Fibonacci sequence if and only if all prime factors of b are of the forms

10k = 1 and 5 [and additionally, all prime factors of a are of the forms 10k * 1]. (ii) Let D
have n distinct-prime factors of the forms 10k * 1. Then there are exactly 2" primitive
sequences with characteristic number D.

Proog: (i) Cf. Theorem 2 of [9, p. 78]. The same source gives an expression r(D) for the
number of inequivalent Fibonaccl sequences having characteristic D. The only difference here
is the observation that the only primes of the forms 5k * 1 are indeed of the forms 10k #* 1.

Note that D, may have square factors even for primitive T; for example, D(&13)= 121 =
112, (ii) See [3] and [9].

Theorem 6: Let S ="T. Then Dg = DplL, + 1 + (-1)7].
Eﬁggﬁ: Dr, = l(rT")z - r1;+er"_l = (rTz)2 - rTarTll
[ (T, + Tpag)? = (T3 + Tpi) (T, + Tpyy) ]
|73 + 2T, Tpsz + Thay = T3Ty = TTpuy = TiTpis = ToysToyy|
| (T3 - T37y) + (Tiig + TossToar) + 2050040 = T1Thyy = T3Tr |
[(T% - T3 ) [1 + (-1)7] + 2T, (FpTy + Fo 1 T5)
= T (Fp Ty + BupTy) = (T + T (E, T + FrTz)’
[(T% - PyT))[1 + (-1)7] + T52Fp4q = Fp) = T2 (Fpyy + Froly)
- T\Ty (Fpyp + Fpyy = 2F,) |
I(Tg - TBTI)[l + (D7) + Tg(Fr+1 + F}-l) - Tf(Fr+1 + E}-l) - TITZ(Fr+1 + E}-1>I
[ (T3 - T,T))[1 + (-1)"] + L, (T3 - T3 - T,T,)|
= | (% - 1,71 + (-1)7 + L,]]
= Dyl1 + (-1)" + L,;].
Conollany: Let T = ™S, Then D, = Dg/[L; + 1 + (-1)7].

Corollary: DpL, square-free, r odd = "T primitive.
Proog: Immediate from Proposition 7(ii) and Theorem 6.
Coroflary: Let S = "T. Then

2
D.Lf, » = 2t, t even
it A4

Dn+5 ¢ F?, r = 2t, t odd

S

Dy « (L, + 2), r even = (
D, = 1
Dp » Lys r odd

The question of which Fibonacci sequences occur as secondary sequences is completely
settled by the work of Section 4, but only if we are willing to identify multiples of equiva-
lent sequences; the answer then is that every sequence is, for every r, r-secondary. If,
however, we decline to make the identification, our curiosity may be piqued by examples like
the following. .

Exampfe: An examination of the table of characteristic numbers of primitive sequences
provides the information:

11



Characteristic Number Corresponding Sequences
(in conjugate pairs)
11 (1,4)(2.5)
19 (1,5)(3,7)

209 = 11 - 19

We note the following relatioms:

{(1,15)(13,27)
(5,18)(8,21)

9(1,4) = 2(8,21) °(5,18) = (2,5)
9(2,5) = 2(13,27) 5(13,27) = (1,5) 5(5,18) = (3,7)
®(1,5) = (8,21)

%(3,7) = (1,15) °(1,15) = (1,4)

We may abstract this information into the table below, where a + represents that a
secondary sequence of the sequence in the left column is equivalent to a multiple of the
sequence in the top row; and a - represents the reverse.

(1,15) (13,27) (5,18) (8,21)
(194) = +
(295) + -
(1’5) - +
(3)7) + =

What is strange is that although one multiple each of (1,15) and (13,27) is equivalent
to a secondary sequence, and (8,21) has this happen twice, it fails to happen at all for
(5,18). At least, no multiple of (5,18) is secondary from an equivalent of what seem the most
likely candidates: that is, the four primitive sequences with characteristic number dividing
209, the characteristic number of (5,18). It may come as a surprise that the characteristic
number of a secondary sequence need not be a multiple of that of the sequence it is secondary
from, and even that a sequence can be secondary from another of much larger characteristic
number. The exact conditions are given in the theorem below.

Definition: Let a sequence T be a multiple of an equivalent of the primitive sequence U; we
will refer to U as the Fase of T.

Proposdition 13: Let Dg = x? Y, ,y € @* (so S not necessarily 1ntegral), and let AS = 'T.
Then D, cannot be of the form u’y, unless r = 1, r = 3, or » = 0 (mod 4).

Proog: Suppose Dy = u®y. Then if r is odd, A2 Ds = Azxzy L.+ u?y =L, * Dy, which implies
L, is a square. By [2], the only square Lucas numbers are L, = 1, L, = 4. If r =2 (mod 4),
then A2D; = A%z?y = FZ, + 5 + u’y, which is impossible.

Conollary: Let S be a primitive sequence with Dg = m* > 1. Then no multiple of S is secon-
dary from an equivalent of F. That is, no secondary sequence of F has a base whose character-
istic number is a perfect square greater than 1.

Proog: Secondary sequences of F of even order have either F or L as their base, and D = 1,
D, = 5. Suppose TF = \S, r odd. Since Dg = m? > 1, but Dp = 1, then by the propositlon we
must have » = 1 or » = 3. But !F = F, which has D = 1, while 3F 2F, which is not primitive.

Example: S = (7,17), Dg = 112, S is not secondary from any equivalent of F, nor from any
sequence T with Dy < 11%.

Theonem 7: Let r and S be given, r € N and S a primitive sequence. Then the only solutions
to = AS with T primitive are: '

A T
r = 2t, t odd: F, V(S)
r = 2t, t even: L¢ S
r=1 1 S
r =3 2 S
r odd, r > 5: ig ij » Y7s

where 7 and j are determined as follows:
Let G = GCD(Dg,L,), with d = Dg/G, & = L,/G, and write % as & = 127, 7 square-free.

Pnooﬁ: It suffices to direct our attention to the last case listed, the others being
straightforward consequences of earlier theorems.

12
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If r is odd, r > 5, then A must satisfy L, * Dy = XZDS in such a fashion that D7 is
integral. For such a A, T = A Y75 is guaranteed to be the unique solution of T = AS by
Proposition 7(iii). So, the only question is what values are admissible for A.

Using the notation of the theorem, we have

MD,  A*de A\3d
Ly [

Since GCD(d,L), 2 = 727 must divide A?. Any X satisfying this requirement yields a solution;
the smallest such A is 7j, and for some multiple of A = Zj, the sequence T is primitive.
Larger values of A lead to multiples-of that sequence.

Deginition: 1If a prime p divides some member of -the Lucas sequence, then the first member L,
of [ which p divides is known as the entry point of p in L, and p is called a primitive prime
divisor of L,. We say p enters L at index n.

Proposition 14: (i) If a prime p enters L at L,, then p|L,x-1) K € I, and p divides no
other members of L. (ii) a) The primes which enter {I,,} include all primes of the forms

20k + 3, 20k + 7, and some primes of the forms 20k + 1, 20k + 9; b) for {Lzn+1}, all primes
of the forms 20k + 11, 20k + 19, and 2, and a different collection of primes of the forms

20k + 1, 20k + 9; c) for {F,,+1}, all primes of the forms 20k + 13, 20k + 17, and 5, plus the
remaining primes of the forms 20k + 1, 20k + 9; d) all primes enter {F,,}.

Proog: Lucas was the first to prove (i) [10, p. 35]; he also proved most of (ii) [10, pp. 22-
23], though Zeckendorf [13] was the first to prove it in the version given (it is usually
called Zeckendorf's Theorem).

Conolany to the Theorem: Let S and T be primitives "T = AS. If r is odd and not less than
5, and Dy has no prime factors which enter L at odd index, then D; is a multiple of D..

Proog: Apart possibly from 2, the prime factors of L, all enter L at odd index. Since
Iy * Dy = A\*Dg, and GCD(Dg,L,) = 1 (S is primitive, so 2}Dg), Dg|Dyp.

Conoﬁﬁaﬂq: Given primitive sequences S and T, and given », a necessary (but not sufficient)
condition for 'T = AS to hold is that sqf(lDs) = sqf(L,), where for n = e’f, f square-free,
sqf(n) = f.

Proog: 1f 7T = XS, sqf(DrDs) = sqf(A®DsDy) = sqf(Lplp) = sqf(Ly).

The sequence S = (5,18) has Dg = 209 = 11 « 19, and the sequence T = (3,7) has D, = 19,
so that sqf(l;D-) = 11 = L. But we have seen that 5(3,7) = (1,15), which is not a multiple
of (5,18).

The result of the second corollary tells us that characteristic number alone cannot
give us a complete criterion for judging if one sequence is secondary from another. Of
course, this was to be expected, since there are always at least two sequences with the same
characteristic number (unless it is 1).

In the example in the proof of the corollary, everything would work out nicely if we
were to identify conjugate sequences, for S = (8,21), T = (1,5), and 5(1,5) = (8,21). This
will not work in general, however. Consider any Dg;, D-, each with at least two prime factors
apart from possibly 5. Then to each of Dg, D,, there correspond at least two pairs of conju-
gate sequences, and it is easy to envision a "switch" that allows sqf(D;D,) to be equal to
sqf(L,) without any of “T = AS, "T = AS, "T = AT, "T = AS holding.

For concreteness, take Dg = 589 = 19 « 31, § = (7,29). D,= 209 =11 - 19, T = (5,18),
15, L, = 1364 = 4 » 11 « 31. Then sqf(DyD;) = 11 » 31 = sqf(L,), but '°T = 22(3,26),
= 15(8,21) = 2(84,325), while S = (15,37).

From among the four items », A, S, and T (S, T primitive), specification of any two
either determines what the other two must be for there to be a solution to "T = A5, or else
determines that no solution exists.

Example: L, = 167761 = 11 « 101 - 151.

Suppose Dg = 101, Dy = 151. Then AS = ?°T is impossible since 101 + 151 = sqf(D;D,) #
sqf L, = 11 « 101 - 151.

However, since L, = 11, we are led to wonder if perhaps AS could be reached from T in

”
two stages; for example, 151 « S = 1/5(25T). This will be our next topic of investigation.

6. CHAIN-SECONDARY SEQUENCES

m

}2n|n e N} U{1/2n|n e I}
{2n - 1n en} U{1/(2n - 1)|n e N}

Degindtions: T
E
0

13



B=EUO0= {n|nellu{l/nnecn}
X=X U{X}, X=E, 0, or B
T Ter e T(Ten (L0 TN L)), rp E BT

Deginition: A primitive sequence S is a chain-secondary sequence of a primitive sequence T
if and only if there is a chain {iT}f_O of (not necessarily integral) sequences such that

(1) S is the base of ;T, with , T = A,S, A, € @"
(11) T = T
(iii) for each ¢ between 1 and k inclusive, there are A; € B and r, € B such that
.
1T E A ;T
When such a chain exists, we say that S is derivable from T, writing S « T.

Notice that allowing A; € @ would not achieve any greater generality, since we are
free to have as many "links" in the chain with r; = 1 as we like.

The definition in effect allows free substitution of a sequence for its conjugate in
pursuing a derivation from T to S, without going so far as to identify the two conjugate
sequences. We have already seen, following Theorem 6, an example of TP ™TT when r is
odd and r > 5; the introduction of conjugates in fact banishes us from the complete commuta-
tivity we would otherwise enjoy in conjugate-free chains:

Propesition 15:  ®TT =™ET  for r,s € B.
Procd: For r,s e N:
(""Dp = "Tpesg+ "Tn = (Tnwger® Tnsg) + (Tnsr + 1)
= (Tnursat Tnep) + (Tneg+ 1))

= .Tn+r+ .Tn = (P'.T)n
c.l/rT = lr,r, s, ler = lUr,s, r, I/rT = Ur, L

since we now know we are allowed to pass § all the way to the left.
The condition § « T is equivalent to the existence of X, and some A; € B, r, € B, for

=1, ..., kK, Ay € €%, such that
k
(ﬂxi>s.
i=0

Proposition 16: S < T if and only if there is a chain {iT'}f_o of (not necessarily integral)

sequences such that
(i) S is the base of T', with 7' = A4S, A} € @*

11) 7 = 7

(iii) for each 7 between 1 and k'’ inclusive, there are A; € B and r; € @* such that

r! -
AT E LT

(iv) r{ = 1 or r; = 2,
Proof: The operation "( ) commutes with (7) for r € £, by Proposition 5 and the definition
of 1/r( ) for r € N; and we have just seen in Proposition 15 that T( ) commutes with ¢( ),
up to equivalence, for r,s € B. The net effect of our remarks is that any "link" in the chain
for which r; € E—~call it an "even link"-—may be repositioned elsewhere in the chain while
preserving S « I. 1In particular, we may permute the links of the chain so that all even links
occur first, still preserving S « T, provided we do not alter the order of succession of the
remaining links. Even links are trivial, in that apart from altering ;_,T by a factor F,/A;
or L,/XA; they do not affect it at all, except possibly to transform it to its Lucas dual. We
conveniently absorb all of the multiplicative effect of the even links into Aj. We may then
eliminate all of them except possibly for a single link with r = 2, since as an operation the
Lucas dual has order 2.

ro...

%)) & ’1T

Proposition 16: The relation « is an equivalence relation (and henceforth we will write it
as «).

Procg: Reflexivity and transitivity offer no difficulty. If 5 « I, so that (1) holds, then

Vr,, oooy 1 L 1 - ) -
s5=11I1 <3r-) T with the symbol 1/ defined to be ; and T + S.
Lw0 i

14



Definition: The equivalence classes into which « divides the set of all primitive sequences we
will refer to as families. The Brousseau number of a family is the smallest of the character-
istic numbers associated with members of the family; the corresponding sequence and its conju-

gate are the founders of the family. We will represent the set of Brousseau numbers by 3.
The set ¥ of $~factors is the set

MU {5mim & M}

where M is the smallest subset of @* containing all odd-index Lucas numbers which is closed
under multiplication, division, and powers.

Examples: L, = 2537720636 = 4 » 11 - 19 » 31 ¢« 97921 gives rise to the following L-factors:
19 - 97921 (since 4 + 11 + 31 = L,.), 31 « 97921 (since 4 * 11 ¢ 19 = LgLy), 31 = 19 - 97921
(since 4 « 11 = L[,L,), and L, itself.

In light of Proposition 16, the condition that S « T is equivalent to (1) holding for
some k and some Ao € @*, A, €5, r;, €0, 7 =1, ..., k, with », = 1 or 2. Converting to the
corresponding necessary condition on characteristic numbers gives

eN

(2) D, 5% ==t - = D
I1 Ly, ‘.722 Il (/23
1/r;eN 1/A;eN
or Dy« 5°% - I1 Ly qg « M anp? =0 - 11 Lim, * q: - 11 A
r.eN 1/A; €N 1/r. el AcEN

with a = 0 or 1; and A = q]/q2 in lowest terms, q, € V.

Propcsition 17: Let S,T be primitive. Let p be a prime which is not an odd-index-entry Lucas
prime. 1If pt|Dg;, then pt|D,, for t e N.

Procg: The only other possibility is that p* is "absorbed" by the denominator of the fraction
on the R.H.S. of (2). Denote that denominator by B?, and tﬁg corresponding numerator by 42,
and suppose that p*[B?, p*|4%. From (1) we know that B™ """'T = A4 « 5. Now, the fact that p

. P o . :
* does not divide any L., r odd, means that no term (7 'T) , written in lowest terms, can

have p as a factor of its denominator, since (M “'r‘T) can incur only Y-factors there.
Hence, p|B implies p|A, because S is primitive; but this leads to the conclusion that p:[DT.
Consequently, a prime of the form 10k * 1 which has odd-index entry in F or even-index
entry in [ is a Brousseau number, for some family of sequences. The product of powers of such
primes is also a Brousseau number, and we will call such numbers Brousseau nwmbers of the first
kind. Every sequence whose characteristic number is a Brousseau number of the first kind is
the founder of a family.
The remaining Brousseau numbers are either products of powers of primes of odd-index
Lucas entry (the second kind), or mixed products of Brousseau numbers of the first and second
kinds (the third kind).

Example: Dp =1, D,y = 41, Dy * Dy 5y= 41. But 41|L 4,,0 and no other Lucas numbers;
hence 41 £ &, so F and (1,7) must be in different equivalence classes.

Exampfe: L,s = 11 « 101 « 151 = Lg » 101 + 151. The primes 101 and 151 are both primitive
prime divisors of L,s, and both have period 50. Each of them is a Brousseau number, but
their product is an Y-factor.

Concllary: Two sequences with relatively prime Brousseau numbers belong to different

families.

Theorem &: 1If S and T are in the same family, then D;Dg is an Y-factor times a rational
square. If S and T are both primitive, then sqf(DyD;) = sqf(R), % an integral &-factor.

Pnoaﬁ: Algebraic manipulation of (2) easily leads to the first conclusion, with, say,

2 s?
1 1 , .
DTEg = I: . ;g—, 21, 22 products of odd-index Lucas numbers, §,,8, N, sl/s2 in lowest

terms. If S and T are both primitive, D,D. € N. Since GCD(sl,sz) = 1, we must have @ [g2
A 2 i 271
Writing 2, as a*b, b square-free, we obtain s, = abc for some 2, and

a’siD:Ds = 2,52a%/0, = 2,a’b?c?a?/a’b = %,a%ic = &,1,c?
and sqf (D;Dg) = sqf(a’siD,Dg) = sqf (£,8,c%) = sqf(%,2,), with 2,2, clearly an
Y-factor.

15



We would like to find a criterion involving characteristic numbers which would enable
us to determine if two sequences belong to the same family or not. We conclude with conjec-
tures in this direction:

Conjecture 1: Ds = Dp =S5 «+ T
Conjecture 2: S+>T <=>D;D; is an -factor times a rational square. It would also be
desirable to have an algorithm to produce the derivation given the Y-factor.

Conjectune 3: p is a Brousseau number => each of the powers of p corresponds to a distinct
family of sequences.
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AN ESTIMATE FOR THE LENGTH OF A FINITE JACOBI ALGORITHM

F. SCHWEIGER
Institute for Mathematics
University of Salzburg, Salzburg, Austria

There are many papers concerning the length of the continued fraction expansion of a
rational number (see, e.g., M. Mendés-France [2]). Following a method given by J. D. Dixon
[1] in an elementary way, an estimate can be given for the length of the Jacobi algorithm of
a rational point.

The Jacobi algorithm may be described in the following way: Let

B={zx=(z,, ..., z)|0<z; <1, 1< <n}
Ifx= (0, ..., 0), then Tx =x. If x;, =+ =2, =0, x,,,>0 for 0 <t <n, then,
T, «oes 0, &, 15 ceesZn) = (0, ovu, 0, 2y o/x, 0 = [Xpya/Tpgq)s ooy Mxpyy - [1/z, 1)
We define z(9) = T9. We say that the algorithm of x has length L(x) = G if
G =min{g > 0 z¢) = (0, ..., 0)}.

Let x(®) = (0, ..., O, méii, cees 288)), then we define
kga+1)= vee = két;1)= 0

k#*D=1 (if ¢ = 0, then k**V = 1)
K= [=f8/x{0, o, kY = (172880

“t+l t+2 t+1l t+1
Af7) =8, for 0<di, j<n
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