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PREFAGE

The Fibonacci Association celebrates the 18th anniversary of its founding with the publi-
cation of this collection of manuscripts. These manuscripts, published here for the first time,
reflect the research efforts of an international range of mathematicians.

The primary vehicle for publication of Fibonacci-related material is The Fibonacei Quar-
terly, the official journal of The Fibonacci Association. However, the volume of research be-
ing done on topics related to the Fibonacci sequence has increased each year to the extent that
the Quarterly is hard pressed to accommodate the timely publication of all worthwhile scholarly
manuscripts being submitted to the Fibonacci Association for publication consideration.

To expedite the dissemination of the growing volume of Fibonacci research information to
the worldwide mathematics community, the Fibonacci Association's Board of Directors has author-
ized publication of supplemental volumes such as this 18th anniversary issue to be published,

when appropriate, and made available for separate purchase by Fibonacci Association members and
nonmembers.

The editors hope these supplemental publications will benefit both the authors of manu-

scripts, by earliest possible publication of their material, and the readers interested in the
Fibonacci sequence, by making more material available throughout the year.

Vernen E. Hoggatt, Jn.
Marjornie Bicknell-Johnson
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SECONDARY FIBONACCI SEQUENCES

PAUL J. CAMPBELL
Beloit College, Beloit, Wisconsin
and
CHRISTOPHER MOELLER
North American Life and Casualty, Minneapolis, Minnesota

1. PRELUDE: AN ENTERTAINMENT

DRAMATIS PERSONAE: Leonardo of Pisa and Edouard Lucas, well-known experts in the mathematics
of deterministic modelling of the growth of animal populations. :

SCENE: Circa fall 1974; lounge of a computing center, where they are whiling away the time
as they wait for the number-cruncher to test their recent conjectures.

LEONARDO: I've made some new discoveries in the realm of our favorite common pastime, the
Fibonacci numbers (as you so flatteringly refer to them), together with some conjectures I
can't yet settle. Maybe we can go over it all together and see what we can come up with.

EDOUARD: Splendid! And what have you to reveal?

L: Let me fill you in on the background first. One fine day last summer I was hitchhiking.
A ride with a boorish driver precluded good conversation; so, left to my own devices, I let
my mind drift to mathematical games for amusement.

E: I suppose that is conclusive proof that you are mathematically inclined, for who else
would choose such a pastime?

L: Who knows? At any rate, Fibonacci numbers are ideally suited for such sport, as you well
know. By chance, I happened to add 13 and 987, and got 1000.

E: In other words, F, and F,, = 1000—0K, what's remarkable about that?

L: As you well know, fdouard, the journey to mathematical discovery often starts with notic-
ing something unusual, however small and insignificant it may seem to be. I paused to con-
sider the roundness of the sum, and then proceeded to wonder: if F, + F,. = 1000, then

Fo + F,, =27

<8 17

E: Well, 21 + 1597 = 1618. A fine coincidence! Those are the first four digits of the
golden ratio ¢ = 1.618... .

L: I tried further pairs—let me summarize the results for you on the blackboard:

Fg+F, = 5+ 377 = 382 ¢"? = .3819...
Fg + F,, = 8+ 610 = 618 ¢! = .618...
F, + F,g = 13 + 987 = 1000 6% = 1.

Fg + F,, = 21 + 1597 = 1618 ¢! = 1.618...
Fg + Fg = 34 + 2584 = 2618 $% = 2.618...

By forming F, + F I was getting 1000 times the three-decimal-place approximation of ¢”*-1.

n+9?

E: Not only that, but your new sequence was also a Fibonacci sequence.

L: Exactly! That was my next observation, and it seemed the more important property to
investigate, since it seemed more susceptible of generalization. And generalize it does!
Adding any Fibonacci sequence to itself at a constant index difference always produces
another Fibonacci sequence. I decided to call the Fibonacci sequences generated in this
fashion secondary Fibonacei sequences. 1 started investigating which Fibonacci sequences
come out as secondary sequences. Let me show you.

E: Say, that's really interesting! But hold on a moment—Ilet's use the blackboard to make
a "formal" record of our brainstorming. After all, if this discussion amounts to anything,
you should write a paper about it for the Fibonacci Quarterly.

L: I suppose you're right, but writing it all up in a paper isn't nearly as much fun as
discovering it all in the first place. 1In fact, I hate writing papers—all that writing,
rewriting, and rewriting again, and I'm still never satisfied with the final product.
Besides, I expect you'll be making some contributions in the course of the discussion. If
they prove valuable, you write the whole thing up. You're always dashing off mathematical



notes and popular articles all over the place. For you this would be just another half-day's
work.

E: It's hardly time to argue about that just yet! We'll cross that bridge if we come to it.
Meanwhile, let's keep a record anyhow. Now tell me, which Fibonacci sequences turn up as
secondary sequences, anyhow? . .

2. BASIC PROPERTIES OF SECONDARY FIBONACCI SEQUENCES

Definition: A (positive)(Fibonacci) sequence {T,}, ,, or T for short, is a doubly infinite
sequence which satisfies the recursion relation
Tner =T + Tna

for all neZ and for which there is an n; €7 such that all terms with index greater than 7,
are positive. We will be especially interested in integer sequences.

By definitional convention we are excluding from consideration the constant zero
sequence, as well as sequences which are negative for every index exceeding a certain integer.

Proposition 1: Any Fibonacci sequence contains a unique pair of comsecutive terms a and b,
both positive, with either a = b or 2a < b.

Proog: See [1, p. 43].

Deginition: A Fibonacci sequence T is in standard format if it is labelled so that T, = a,
T, = b, with a and b as specified in Proposition 1. We will write T = (a,b). A sequence for
which a and b are relatively prime integers is said to be primitive. Two special sequences
are distinguished: the Fibonacei sequence F = (1,1) and the Lucas sequence L = (1,3). As is
well known, the terms of a sequence T in standard format are given by

T = aF,_ , + DbF _,

for any ne Z. i

Definition: Two sequences T, U are equal, written T = U, if T, = U, for every neZ. They are
equivalent, written T = U, if there is a k such that T, = U,,; for all neZ.

Deginition: The Lucas analogue V(T) of a Fibonacci sequence T is the sequence defined by
V(T)n = Tn+1 + -Tn—la

and V(T) may be denoted simply by V when no confusion would result. Note that V may fail to

be in standard format.

Proposition 2: (i) V(T) is a Fibonacci sequence; (ii) V(V(T)) = 5T; (iii) V(F) = L.

Proog: Left to the reader.

We now generalize the notion of the Lucas analogue of a sequence to embrace a whole
family of sequences.

Definition: For r > 0, the rth secondary sequence of a sequence T, denoted "T, is the sequence
obtained by adding T to itself at a constant index difference r:

T =T +7T,.

We will say that "T is r-secondary from T. Note that V(T) is not, strictly speaking, a secon-
dary sequence, though V, = 27;_1 makes V = 2T,

n+r

Pnapob&iion 3: A secondary sequence of a Fibonacci sequence is a Fibonacci sequence.
P/LO(Jﬁ-' r.Tn + rTn_l = (Tn+r + Tn) + (T, ~1l4r + Tn—l) = (Tn-o-r + Tn—1+r) + (Tn+r + Tn)
= Thyr4r+t 7T = rTn+l‘

n+1l
We give here in table form the first twelve secondary sequences of F (taken from [11,
p. 17]), in hopes of inspiring the reader to discover patterns before reading further.

F r= 1 2 3 4 5 6
0 1 1 2 3 5 8
1 2 3 4 6 9 14
1 3 4 6 9 14 22
2 5 7 10 15 23 36
3 8 11 16 24 37 58
5 13 18 26 39 60 94

BEmin ImX ) " X X
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F r= 1 2 3 4 5 6
8 21 29 42 63 97 152
13 34 47 68 102 157 246
F r= 7 8 9 10 11 12
-1 4 7 12 20 33 54
1 9 14 22 35 56 90
0 13 21 34 55 89 144
1 22 35 56 90 145 234
1 35 56 90 145 234 378
2 57 91 146 235 379 612
3 92 147 236 380 613 990
5 149 238 382 615 992 1602

The sequence F = 'F has often been cited as occurring in nature, and the occurrence of
L = ®F is occasionally mentioned as well (see, e.g., [7, pp. 81-82]). What may perhaps be
surprising is that 2F = 3F, 3F = “F, and (1,5) = 5F have been observed as the parameters of
sunflowers grown by Don Crowe, a geometer at the University of Wisconsin [5].

Our indexing of secondary sequences was arbitrary. Generally, a secondary sequence is
not in standard format, and it is necessary to 'backspace' by several index numbers to arrive
at standard format. It turns out to be important for our purposes to keep trace of the index-
ing—if it were not, we could conveniently identify all equivalent sequences. In Section 4
we will specify exactly the amount of backspace for each secondary sequence.

Proposition 4: F, + V, ., t odd
2ty o

n
Ly * T4t t even

Proogg: The first proof bf these well-known identities seems to be due to Tagiuri [12],
according to Dickson [6, p. 404]. Both are cited by Horadam [8], who furnishes a more acces-
sible proof. In any case, the proof is straightforward, and we leave it to the reader rather

than reproduce it here,.
It is not possible to find so simple an expression for ”T when r is odd.

Deginition: The conjugate T of a sequence T in standard format is the sequence defined by

_ 5 (-1)"T.,, T#F
T, =

(T,, = -1)"™r,, T=F

For a_sequence T not in standard format, let T, = U,,;, U in standard format. Then define
T, = U,,y- Note that F =F, L = L, and no other primitive sequence is self-conjugate.

Proposition 5: (i) T is a Fibonacci sequence; (ii) T = Ty (iii) V(T) = 2p 2 27 = V({T);
_ F, » T, t odd — _
(iv) ?*T = _ 3 (v) *Pro= 2T
L, =T, t even
Proo4: Left to the reader.
Theonem 1: Let S and T be Fibonacci sequences. If S = 'T, then

for rodd: "§ =L, T

5F2 + T, t odd
(Ly + 2)T = 4

Li « T, t even

for r even, r = 2¢t: 7S

Proof: r odd. We do the case S £ F, T £ F, S in standard format. For n even,
"5y = Spart Fp o= (-S4 (-1)7S.,
= =Sa.p+ S = ~Tanspr +Tn) + (T + Topniy)
=T p4p = T-p + LsT_,,, by Proposition 4
=L,* (-1)'T.y =1L, * T,.
The proof for n odd is analogous, as are the proofs for the other cases.

2t = 2 - cp2
F, = V) = FoV(V = 5F7 .
p o= 2¢. 2tg = 2t(2tpy = (F, ) = FLv(V(D) SF; T, t odd
ZtLt « T = Li « T, t even



Example: T = (1,7), § = °T = 2(11,36). Then T = (5,11), S = 2(14,39), °5 = 76(5,11) = L,

Proposition 6: 3T = 2T,
Proof: T, + T, =a+ (a+2b) =2(a+Db), T, +T5=>0b+ (2a+ 3b) =

of taking the rth secondary sequence of a sequence 7.

Definition: YT = "T/[L, + 1 + (-1)"], with the terms of Yrp being allowed to be fractional.

Note that 1/2¢7 =T/(L,, + 2), by Proposition 5.

2(a + 2b).

The results of the theorem suggest the definition of an inverse to the operation 7(

)

T.

Pﬂopoé&t&on 7: (i) YT is a Fibonacci sequence; (ii) Urerqy = I'(]'/:"I') = T; (iii) Up to equiva-

lence, /*T is the only sequence whose rth secondary sequence is T.
Proof: (i) Neither (7) mor "( ) disturbs the recursion relationm.

(ii) r odd.

|
N
3

l/I"(I’T) =

I. 7 = T, by Theorem 1.

YL, +2) 2 BF, + V/(L,, +2) =

ki

)l

*(Mrr) =

!
=
e
/\w

Ly

b
I

= 2t, t odd.
1/21;( ZtT)

Zt(l/ZtT)

F? « 5T7/5FF =T

= 2t, t even.

=
I

I/Zt( ZtT)

YT/, +2) = ®L, - T/L} =L, *

2612ty = 28 (2T /(L,, + 2) = L(L, « T)/I2 =T

]

(iii) Suppose 7§ = TS’

Example: 3(1,7) = (10,29), 1/3(10,29) = (1,7), /7(10,29)

i

(Q 184
29°729

A major effort of the remainder of the paper is to determine exactly what integer

sequences are secondary from other integer sequences.
3. STANDARD-FORMATTING SECONDARY SEQUENCES
Definition: Let I be the 2 x 2 identity matrix and let
0 1
P:
1 1
Note that if T is a Fibonacci sequence, then

(Tp_ys T,) = P = (T, Trz+1)’

where the ordered pairs are considered as 1 x 2 matrices. Also,

jal

o e F,
5
fm Frn+1

Theonem 2: Let S = (e,d) and T = (a,b) be in standard format. Then some multiple of an
equivalent of S is secondary from T if and only if there exist positive integers A,r and a

5FZ « T

P2

Lt . T/Li

=
-JL), which by the line above is just T.

=T

Zt(Ztﬂ_’/(LZt + 2)> = Zt(FtV)/(LZt +2) = 2‘t(Ft V)/(5Ff)

=T

T. Then Y7("$) = 1%73') = V*T, so that § = 5’ =77,

nonnegative m < » + 1 such that one of the following equivalent conditions holds:

(1) Me,dP" = (a,b)(T + P7)
(11) xe = (D" [(-FTpiy + Fpy1Tps1) + (-Fpb + F,,12)]
= CD"[FTpsy + By 1Tpyy) + (Ba+ F D))

T 00000
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(111) Ae = Tpopmer + (-1)" (@Fp 4y - DFn)
M = Fp_pyz + (-7 (-aF, + bF,_;)

(1v) e = alFp_p 3+ (C1"Fpyy}l # DIF._, = (-1)"Fp]
M = alF,_, - (-l)mFm] + blFp ey + (_l)mFm-l]

Proog: If the relation (i) holds, it exhibits a A-multiple of an equivalent of S as a
secondary sequence of T.

Conversely, suppose some multiple, say by A, of an equivalent of S arises as a secondary
sequence, say the rth, of T. Then ("Tl,".’l‘z) =X * (Sp41+Sm+2) for some m. But

(@,b) (T + P7) = ("T},"T,) = A(S,,1,5,,,) = (c,d)P".

The quantity m represents the number of places it is necessary to backspace ("Tl,"TZ)
to arrive at standard format. We must show that 0 <m < r + 1.

Since T is in standard format, 0 < T, < T, < T, < T,,,, for n > 2, so
0<T™, =Ty + Tpyy £ Ty =T, + Tpyy, for » > 0. Hence, m > 0.

To see that m < » + 1, backspace (r +2) places: ("TI,I'TZ)P""2 = (Tp-q +T2;, T + T).
Since T is in standard format and r > 0, exactly one of T.,_; and T-, is negative. If T Z F:
r even makes T_n.; + T-1 negative, while r odd and » > 3 forces 7., + I, negative; r = 1
yields Top-y + T3 > T_, + T, > 0. In any case, we have certainly backspaced too far. The
case for T = F is analogous.

Fm-l En
(1) = ({di). Ae,d)P™ = (Ae,\d) , while (a,b)(I + P7)
: Fm Fm+1
1 0 Fn_y F,
= (a,b) + = [(1 + F,_1)a+ bF,, aF, + b(1 + F,_1)].
0 1 Fr Frniy

Now, (i) asserts that these quantities are equal, so Cramer's Rule yields

Th41+a Fp Frnoi Tp41 ta

Ac = A Ad = A
Toy2 b Fpyy F, T.., +b
Fm-l Fm 2 m

4= =By 1Bner - By = (D)
FM Fm+1

and (ii) follows.
(ii) = (4ii). This implication is based on the reduction

B lpso ¥ BTy = =Fn(Tpyy + 1) + (Fp + Fply) Tosa
=By - BT, +E T+ B 1 Thi
=B Tesr - BT

= (-1)(-E, T, + FuT.).
Repetition for a total of m times yields
-FmTz-+2 + Fm+lTr+1 = <_l)m (-FOTr'-i-Z -m + Fl Tr+l-m) = (—l)mTr+1-m'

Thus,

Ae = L [G-D)"Tpyy om+ @Fpyy = bFpl = Ty + (-1)7 (aFp 4y = BF,).

A similar argument gives t‘he corresponding expression for Ad.

(iii) =» (iv). The equations in (iv) can be obtained directly from (iii) by use of the
identity T = aT, + bT,

n+2 n+1°

(iv) = (1). We verify the first coordinate of the matrix equation (i) using the substitution
(iv). The first coordinate of A(e,d)P™ is



{alfy oy + (CD"Fpyy] + DIF, = (-DTE,} » By
+ {alF,_,, - (<1)"F,1 + b[F, _, ., + (-1)"F,_,} + F.
= alF pFpoy + CD"F Froy + F,_F = (-1)7F]]
+ blF, _,Fp_ - D'F,Fp_y +E, _ F. + (-1)"F,_,F,]
=a(l poyFpoy * FopFy + 1) + B(F, Fp g 4 By Fr)
a+ Fn(afyp_m + bF_pn41) + Fy_y(@F, _,_, + BE,_ )
Ty + Elromert By Tr i

Tl + (Fm-l + Fm-Z)TP'-m+2 + Fm—lTr-m+1

Ty + B Tpomest 0T g

The last three lines comprise a reduction, which iterated for a total of (m-1) times
yields

Tl + FlTr—m+2+m-1+ FUTr-m+1+m-1= Tl + Tr+1’
the first coordinate of (a,b) (I + P7).

Coroflanry: Some multiple of an equivalent of a sequence S = (¢,d) in standard format is
secondary from F if and only if there exist positive integers A,r and nonnegative m < r + 1
such that

Ae = Fr+1 -m ¥t (_l)mFm—l

Ad = F,

r+2-m

- (—l)mFm -2

Examination of the equations of the corollary makes it clear that stronger constraints operate
on m than just 0 <m < r + 1. In the next section we pin m down precisely.

L. BACKSPACE OF A SECONDARY SEQUENCE

Throughout this section, m will denote the backspace necessary to bring the sequence *T
into standard format, where T = (a,b) is in standard format and primitive.

Definiticn: The eccentricity of a sequence T = (a,b) in standard format is the quantity

e = bla. 0, >3
Proposition 8§: For r = 2, m = 1, T=For T=1
2, 2 <eg <3
For » = 3, m = 2,

Proof: The terms 2T_,, ..., 27, are given, respectively, by 3b - 4a, 3a - b, 2b - a, 2a + b,
and a + 3b.

If 3a < b, 2(2a + b) = ba+ 2b < a + 3b, som

If 2a < b < 3a, 3a-b >0 and 2(3a - b) = 6a

= 2b

The reader may confirm that m = 1 for T = F and T = L. The case r = 3 has already been settled
(implicitly) by Proposition 6.

0.
2b <3 ~-2b=b <b+ (b - 2a)
2 < 2b - a, som = 2.

!

Theonem 3: For r = 2t, t-1, ¢ >3 and ¢ odd
m= < t, t evenor ' = For T =1
t+ 1, 2 < g <3 and ¢t odd

Proog: From Proposition 4, Proposition 8, and the fact that V, = 21}_1.

As we would expect by now, the case of r odd offers greater challenge and, as it turns
out, some surprises.

Thegrem 4: For r > 3, r odd, r = 4k + 1 or r = bk + 3, k > 1. Define A, = Fyp ., = F._pi_2>

By = Fpgk-3 t Fpygs and o, = B,/4,. Then

2k, € < Oy
m=<2k+1,e=10r¢€=aq,
2k + 2, 2 <€ < qa,

RinE X X X X B



Proog: Exclude at first the possibilities T = F or "T Z AF. We examine the case of m even,
arriving at the results of the theorem; then we show that m cannot be odd. Finally, we
readmit F to the arena and distinguish cases to arrive at the remaining clause of the theorem,
which allows for odd m.

Case 1: T # F, "7 # F. The equations (iv) of Theorem 2 give an exact expression for
T = (Ae,Ad) in standard format. Proposition 1 reminds us of the conditions Ac¢ and Ad must
satisfy in the event that "T is not equivalent to F:

Ac > 0, or

(*) alFp oy + (1)"Fpyq] + bIF,_, - (-1)"F,]1 >0
2)e < M, or
(*%) 2[a(F, poy - D"Ey,) + b(E_, - (-1)"F,)]

<alFp_, = (CD)"F] + blFp_pyq + (C1)"Fp_4].
Subcase, m even. Let © = m - 2k, so that m = 2k + 7, ©7 even. Since 0 <m <r + 1,
-2k <1 £ r - 2k + 1. Equations (*) and (**) now take the forms
(*e) a(Fygp-g-1 % Fogugar) > D(Fpyy = Foogpoy)
(**e) allppiars ¥ Bookogo3) <DPFpugyr = Bogk-i-2)

Ifr-2k+1>%1>2, then-1<r-2h-71<4h+3-2k-41<2k-727+3<2k+1c<
2k + 2, and 2k + © > 4, so the R.H.S. of (*e) is positive. Also, T # F implies 2g < b.
Consequently,

a(Fp_op-; + F2k+1;+1) > b(F2k+1 - Fpgg-qg) > 2a(Fy ;- Fp_k-i)
and hence
Fpook-i-1% Fopqgar > 24 = Frogroy)

or, after simplification and use of the recurrence relation, F,.zx-;+2 > Fox4i-2.
The subscripts are positive, so we must have r - 2k - 2 + 2 > 2k + 7 - 2 or
27(r - 4k) + 4 < 7, or 7 < 7/2. By hypothesis, 7 is positive and even, so ¢ = 2 and

m= 2k + 2.

If -2k <71 <0, then 2k + 2 +3 >3 andr -2k -7 -3>r-2k-3= (4bk+1) -2k -3
=2k - 2 >0, so the L.H.S. of (**e) is positive. As a result, the R.H.S. must also be posi-
tive, yielding Fyp4; 42 > Fp_2x-;-2. The subscripts are positive, so we must have
2k + 1 +2>»r~-2k~-1 -2, 0r 20 > (r - k) - 4 > -3, or © > -3/2. By hypothesis, 7 is
nonpositive and even, of ¢ = 0 and m = 2k.

The upshot so far is that if m is even, it can only take on the values stated in the
theorem.

In case m = 2k + 2, the R.H.S. of (*e) is positive, so dividing both sides by
a(I}k+2 - F}-zk-z) retains the sense of the inequality and yields

€=bla< (Fpogk-3 + Foeas ) (Fypyy = p-2k-2) = Op-

In case m = 2 , the L.H.S. of (**e) is positive, so dividing both sides by
a(Fy, 42 = Fp_gx-5) retains the sense of the inequality and yields

€ =Dbla> (Fr-ak-3 * Fpp3)/ (Fogya = Fp_gg-2) = On.
Subcase, m odd. The equation (**) becomes
(*%0) , 2{a(Fp oy = Fpy1) + DFp_p + F)]l < aFp gy + Fn) + D(Fp_ iy = Fno1).
After simplification and use of the recurrence relation, we have
a(Fm+3 - Fr—m-3) > b(Fr-m—z + Fm+2)'
Since » + 1 >m > 0 and » > 5, the R.H.S. is positive. Since T # F, b > 2a, and so

a(Fp4s = F ) > 2a(Fp_p_yt Fpyp) >0

r-m-3

and
Fm+3 = fr-m-3 > 2<Fr-m—2+ Fm+2)'

So after simplification and use of the recurrence, -F ., - F,_
such positive subscripts.

Case II: T =F, 'T# A\F. We have a=b = 1.

n > 0, which is impossible for




Subcase, m even. Equation (**) becomes Fj, .3+ Fp,_,_3< Fp,,, - F,

»-m-2s which gives
< 0, which is impossible for such positive subscripts.

+

F
fr-m-1
Subcase, m odd. Equatioms (*) and (**) become Fp_p_y - F, q + B + Fp > 0, so
Foome1 = Fno1 > 05 Foyz = Foomo3 > Fa_pogt Fpyg, 80 Fpyy = Fu_p_oy > 0. The subscripts being
nonnegative, these inequalities require that m+ 1 >r -m-land»r -m+ 1>m- 1, or

r/2 -1 <m< r/2 + 1. The only integers between the bounds are (r-1)/2 and (r+1)/2, only
one of which is odd. If r = 4k + 1, (r+1)/2 = 2k + 1 is odd; if r = 4k + 3, (r-1)/2 =

2k + 1 is odd. 1In either case, m = 2k + 1.

fm+1

Case III: T # F, T = )\F for some ).

Subcase, m even. Here we have now Ac¢ = Ad > 0 and the corresponding substitute for (%)
and (**):

a(Fr—m-l + Fm+1) + b(Fr-m - Fm) = a(Fr-m - )+ b(Fr-m+1 + Fm-—l) > 0.

Simplification gives a(-F,_,_, + F,,,) = b(Fn_p-1 *+ Fp4y), which is positive since the sub-
scripts on the R.H.S. are positive. Using the fact b > 2a, and dividing by a, we get

Fovy = Fpomoy > 2(Fp_p_1+ Fpyy1), which leads to the contradiction -F,_; - F,_,,; > O.

Subcase, m odd. The equations of (iv) of Theorem 2 become
a<Fr—m-l - Fm+l) + b(Fr-m + Fm) = a(Fr'—m-Z + Fm) + b(Fr-m-l + Fm+1) > 0.
Simplification gives a(Fp_,_; + Fp42) = b(~Fp_p_1 + F,41). The subscripts on the L.H.S. are,
respectively, nonnegative (m odd implies m < 2k - 1) and positive, so that -Fn_,_; + Fp4; > 0;

and using the familiar b > 2a and dividing by a in the original inequality gives
Fomoo ¥ Fny2 > 2(Fpe1 - Fpop-y). Simplification reduces this to Fn_,4; >F,_;. We are now

in the situation of Case II, m odd, so we may conclude m = 2k + 1. Here, b/a = Bp/A, follows

without difficulty.

Case IV: T = F, TPz AF. We may follow Case III to the points
-m=-1 + Fm+1);
modd: alF._p_2 + Fpi2) = b(=Fo_p_1+ Frpq).

m even: a(F,_,_, = Fns2) = b(F,

Here in Case IV we have a = b = 1:

meven: Fn_p_2= Fpnyo=Fpom-1+ Fns1, so F, = F._, and either r = 2m (impossible:
r is odd); m = 1, » = 3 (impossible: m is even); or m = 2, r = 3 (excluded by hypothesis).
m odd: Foopmeo ¥ Fpyp = =Fp_po1+ Fryy, 80 Fu_py + F, = 0, and the restriction

0 <m<r+ 1 forces the contradiction m = r = 0

Conollary: For r = 4k + 1, k > 1:

+ F

ez s lim o, = £33 =2 300,

r=4k +1 2

k »o

- Ay = 2Fy, By = 2F,

For r = 4k + 3, k > 1: A, = Fy

K

» Bp = Fpp + F

peas s Lm0 = 26 + 1) = 5.236.

k +o

(The number ¢ is the golden ratio.) Moreover, because of the recurrence relation for F, each
of the sequences {a,; 41}, {04x+3} consists of every other term of the respective Farey
sequences {(2F, + F,,,)/2F,}, {(F, + F,,3)/F,}.

Proog:
Ages1r = Foxwn = Fugsr-ok-2 = Forwg = Foxon = Fopyy T Py = Fppoy = 20y

Bies1 = Fursr-2k-3 ¥ Foxes = Fyp g ¥ Fypyp ¥ Fypyy = 2841 + Fyp + Py

= 3Fy + 2Fy _ t Py = 2Fy + 2Py +t Fy oy = 2Fy + Fyly-
. X 1 _
Lim oy yy = Un(Fy + By yp) /2y = 1+ 307 = (0 + /2.
Ak+s = Fopwo = Fagwaook-2 = Foran = Fypy = Fype e
Bipws = Fagwsoon-3 ¥ Fopasy = Foo + Fopys’

lim @, ,, = Um(F, + Fp  3)/F, =1+ ¢ =2(¢ + D).

k + k+=

~~-~eer"
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(In each case the existence of the limit is guaranteed because the sequence is monotone and

bounded.)

We present below a table of the Farey sequences which contain the values o,. The paren-
thetical entries, consisting of the values of the Farey sequences intermediate between values
Op, form their own sequence which we shall call B,:

Defdnition: Buyyy = (Fyo_y + Fpp) /Py g5
Buxss = QFypuy + Fpp i3 )/2Fy 41 -

We even examine what the calculated values of o, and B, would be for » = 3 and r = 1, even
though the theorem above does not extend to these.
In fact, we can extend the definition of the o's and B's as follows:

Definition: o,, = By, = 3, t odd;

Q,y = 3, Byx = 2, T even;
a, =3, By =2,0,=2, 8, = 2.
r...1 3,5 7 11 13 15 17 19 ...
|
4 1 5 k) 14 23 37 60 97 157
7012 4 6 10 16 26 42 gg - T (@ +3)/2
2 2 ! 4 6 10 16 26 42 68 110
+T 01T 1 2 3 5 8 13 a1 v T o20+D

Thus, we have the sequences formed as follows, from first element on:

. 546 5 14 5 16 5 37
a’ 2’ 3’ 3, 3, 2’ 3’ l’ 3, 6’ 3’ 3, 3’ 16’ 3,

. 459 , 10 ;23 , 2
B: 2,3,2,2, 7,3, 72,5, 3, 15 2, % 3, .

The results of this section so far may be summed up in saying that m depends only on »r and €
and is uniquely determined once they are specified. The same is true for the quantity d/ec.
Easy algebra applied to the equations (iv) of Theorem 2 yields a general formula for d/c; we
rename this quantity 6,(€) to indicate the independent variables on which it depends. It is
convenient, however, to express it in terms of the variable m also, which itself depends on r
and €.

Proposition 9: The eccentricity 6,(€) of TT, where € is the eccentricity of T, is given by
m
[Fp_m - (-l)mFm] + [FI'-M+1 + (-1) Fm-l]

Sn(e) = -
[Fr-m + (-l) Fm-(-l] + [Fp_m - (—l)mFm]
Conversely,
Sp(E)[Fp_py + )"Fp 01 = (B, = (FD)7F,]
E =

[F:r'-m+l+ (’l)mFm_l] = 6;.(5) [Fr-m - (_l)mFm]

The function 6, is one-to-one, so that € in turn is uniquely determined by r and §,; in other
words, we may speak of the inverse function §;'.

Proof: If 8r(g;) = 6n(€,), then the corresponding secondary sequences (using left subscripts
to distinguish) 1T, 3T must be equivalent to multiples of the same primitive sequence U, so

T = kU, 3T = k,U. By Proposition 7(iii), for < € {1,2}, ¥*(;7) = Y7(k;U) = k}* U is the
only sequence, up to equivalence, whose rth secondary sequence is T. But the upshot is that
Un 7 and YTT must be equivalent to multiples of the same primitive sequence T. Hence €, = €,.

Proposition 10: e = 2 + 1/(e - 2).

Proog: To=b -a, T-y =2a-Db, T-p =2b - 3a, so €5 = (2b - 3a)/(b - 2a) = (2e - 3)/(e - 2)
=2+ 1/(e - 2).

Theorem 5: For r =1, r = 3, or » = 0 (mod 4), 6,(e) = €. Otherwise, &, maps
1-+8,

(2,06,) * (B,,»), order-preserving




apr + 1
(¢,,®) + (2,B,), order-preserving
and 6, is a bijection from {1} U (2,») into itself.

Proof: For r # 3, r # 0 (mod 4), and € # 1, € # ,, we have m even, so that the first equation
of Proposition 9 holds with the (-1)" deleted.
€ < 6, implies m = 2k + 2, if r is odd, and m = t + 1, if r = 2¢, t odd.

[Fr-m - E%] + 2[Fr-m+1 + Fm-l] F;—m-a + Fm-3
[F + Fpyq) + 2[Fp_, - F,] F -F,_,

r-m-1 r-m-2

PRS-

since §, is clearly continuous in € on (2,0,). Treatment by cases gives
Forsa t Fop 1)/ (Foppy = Fu) = (Fyepy + 2Fpp4q) = Bygss, for » = 4k + 3;
lim+5r(E) = (Fopqg + Fop 1)/ (Fygyy = Fyp) =Bugyy, for r = 4k + 1;
€2
(Fyypy + Fy_)/(F, .y = F,_)) = 3F,/F, = 3 = By, for » = 2¢, t odd.
In short, lim+6r(E) = B,. Similarly, lim §,(¢) = ®. The numerator of 0,(€) is of the form
€+2 [

e + €f, while the denominator is of the form g + €h. Now, with r given, the fact that € is
in (2,0,) determines m, so that in this interval e, f, g, and h are constant.

d 8p() = de+f _flg+h) -he+F) __fg=-he
de T de g+ fFf (g + ) Tlg+Fm?e

So the sign of the derivative of O» is constant in (2,0,). From the limits established above,
we realize that O, is increasing throughout (2,0,).

The same argument may be applied to the behavior of 8» on (@n,®).

The cases r = 1, » = 3, r = 0 (mod 4) offer no challenge.

Example: 4, € =1
_ (3e - 2)/(5 - 26), 2 <€ <23

Ss(€) = 1, e = 23

(1 +48)/(3+€), > 2%

FIGURE 1
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5. CHARACTERISTIC NUMBERS OF SECONDARY SEQUENCES
The concept of characteristic number of a Fibonacci sequence was introduced in [1] to
structure the collection of Fibonacci sequences.

Deginition: The characteristic number Dy of a Fibonacci sequence T is Dy = |72 - T, T,,.|.

Readers familiar with the elementary properties of Fibonacci sequences will recognize
that the value of D; is independent of the choice of n, so that D, is well defined.

A table of characteristic numbers of primitive Fibonacci sequences for D < 2000 can be
found in [4, pp. 42-44].

We summarize some useful properties of characteristic numbers in the following
proposition. -

Proposition 11: (i) Dyp = k®Dy; (i1) D, = 5D;; (iii) Dy = Dy.
Proog: Left to the reader.

Proposition 12: (i) A natural number n = a’b, b square-free, is the characteristic number of
a [primitive] Fibonacci sequence if and only if all prime factors of b are of the forms

10k = 1 and 5 [and additionally, all prime factors of a are of the forms 10k * 1]. (ii) Let D
have n distinct-prime factors of the forms 10k * 1. Then there are exactly 2" primitive
sequences with characteristic number D.

Proog: (i) Cf. Theorem 2 of [9, p. 78]. The same source gives an expression r(D) for the
number of inequivalent Fibonaccl sequences having characteristic D. The only difference here
is the observation that the only primes of the forms 5k * 1 are indeed of the forms 10k #* 1.

Note that D, may have square factors even for primitive T; for example, D(&13)= 121 =
112, (ii) See [3] and [9].

Theorem 6: Let S ="T. Then Dg = DplL, + 1 + (-1)7].
Eﬁggﬁ: Dr, = l(rT")z - r1;+er"_l = (rTz)2 - rTarTll
[ (T, + Tpag)? = (T3 + Tpi) (T, + Tpyy) ]
|73 + 2T, Tpsz + Thay = T3Ty = TTpuy = TiTpis = ToysToyy|
| (T3 - T37y) + (Tiig + TossToar) + 2050040 = T1Thyy = T3Tr |
[(T% - T3 ) [1 + (-1)7] + 2T, (FpTy + Fo 1 T5)
= T (Fp Ty + BupTy) = (T + T (E, T + FrTz)’
[(T% - PyT))[1 + (-1)7] + T52Fp4q = Fp) = T2 (Fpyy + Froly)
- T\Ty (Fpyp + Fpyy = 2F,) |
I(Tg - TBTI)[l + (D7) + Tg(Fr+1 + F}-l) - Tf(Fr+1 + E}-l) - TITZ(Fr+1 + E}-1>I
[ (T3 - T,T))[1 + (-1)"] + L, (T3 - T3 - T,T,)|
= | (% - 1,71 + (-1)7 + L,]]
= Dyl1 + (-1)" + L,;].
Conollany: Let T = ™S, Then D, = Dg/[L; + 1 + (-1)7].

Corollary: DpL, square-free, r odd = "T primitive.
Proog: Immediate from Proposition 7(ii) and Theorem 6.
Coroflary: Let S = "T. Then

2
D.Lf, » = 2t, t even
it A4

Dn+5 ¢ F?, r = 2t, t odd

S

Dy « (L, + 2), r even = (
D, = 1
Dp » Lys r odd

The question of which Fibonacci sequences occur as secondary sequences is completely
settled by the work of Section 4, but only if we are willing to identify multiples of equiva-
lent sequences; the answer then is that every sequence is, for every r, r-secondary. If,
however, we decline to make the identification, our curiosity may be piqued by examples like
the following. .

Exampfe: An examination of the table of characteristic numbers of primitive sequences
provides the information:

11



Characteristic Number Corresponding Sequences
(in conjugate pairs)
11 (1,4)(2.5)
19 (1,5)(3,7)

209 = 11 - 19

We note the following relatioms:

{(1,15)(13,27)
(5,18)(8,21)

9(1,4) = 2(8,21) °(5,18) = (2,5)
9(2,5) = 2(13,27) 5(13,27) = (1,5) 5(5,18) = (3,7)
®(1,5) = (8,21)

%(3,7) = (1,15) °(1,15) = (1,4)

We may abstract this information into the table below, where a + represents that a
secondary sequence of the sequence in the left column is equivalent to a multiple of the
sequence in the top row; and a - represents the reverse.

(1,15) (13,27) (5,18) (8,21)
(194) = +
(295) + -
(1’5) - +
(3)7) + =

What is strange is that although one multiple each of (1,15) and (13,27) is equivalent
to a secondary sequence, and (8,21) has this happen twice, it fails to happen at all for
(5,18). At least, no multiple of (5,18) is secondary from an equivalent of what seem the most
likely candidates: that is, the four primitive sequences with characteristic number dividing
209, the characteristic number of (5,18). It may come as a surprise that the characteristic
number of a secondary sequence need not be a multiple of that of the sequence it is secondary
from, and even that a sequence can be secondary from another of much larger characteristic
number. The exact conditions are given in the theorem below.

Definition: Let a sequence T be a multiple of an equivalent of the primitive sequence U; we
will refer to U as the Fase of T.

Proposdition 13: Let Dg = x? Y, ,y € @* (so S not necessarily 1ntegral), and let AS = 'T.
Then D, cannot be of the form u’y, unless r = 1, r = 3, or » = 0 (mod 4).

Proog: Suppose Dy = u®y. Then if r is odd, A2 Ds = Azxzy L.+ u?y =L, * Dy, which implies
L, is a square. By [2], the only square Lucas numbers are L, = 1, L, = 4. If r =2 (mod 4),
then A2D; = A%z?y = FZ, + 5 + u’y, which is impossible.

Conollary: Let S be a primitive sequence with Dg = m* > 1. Then no multiple of S is secon-
dary from an equivalent of F. That is, no secondary sequence of F has a base whose character-
istic number is a perfect square greater than 1.

Proog: Secondary sequences of F of even order have either F or L as their base, and D = 1,
D, = 5. Suppose TF = \S, r odd. Since Dg = m? > 1, but Dp = 1, then by the propositlon we
must have » = 1 or » = 3. But !F = F, which has D = 1, while 3F 2F, which is not primitive.

Example: S = (7,17), Dg = 112, S is not secondary from any equivalent of F, nor from any
sequence T with Dy < 11%.

Theonem 7: Let r and S be given, r € N and S a primitive sequence. Then the only solutions
to = AS with T primitive are: '

A T
r = 2t, t odd: F, V(S)
r = 2t, t even: L¢ S
r=1 1 S
r =3 2 S
r odd, r > 5: ig ij » Y7s

where 7 and j are determined as follows:
Let G = GCD(Dg,L,), with d = Dg/G, & = L,/G, and write % as & = 127, 7 square-free.

Pnooﬁ: It suffices to direct our attention to the last case listed, the others being
straightforward consequences of earlier theorems.

12
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If r is odd, r > 5, then A must satisfy L, * Dy = XZDS in such a fashion that D7 is
integral. For such a A, T = A Y75 is guaranteed to be the unique solution of T = AS by
Proposition 7(iii). So, the only question is what values are admissible for A.

Using the notation of the theorem, we have

MD,  A*de A\3d
Ly [

Since GCD(d,L), 2 = 727 must divide A?. Any X satisfying this requirement yields a solution;
the smallest such A is 7j, and for some multiple of A = Zj, the sequence T is primitive.
Larger values of A lead to multiples-of that sequence.

Deginition: 1If a prime p divides some member of -the Lucas sequence, then the first member L,
of [ which p divides is known as the entry point of p in L, and p is called a primitive prime
divisor of L,. We say p enters L at index n.

Proposition 14: (i) If a prime p enters L at L,, then p|L,x-1) K € I, and p divides no
other members of L. (ii) a) The primes which enter {I,,} include all primes of the forms

20k + 3, 20k + 7, and some primes of the forms 20k + 1, 20k + 9; b) for {Lzn+1}, all primes
of the forms 20k + 11, 20k + 19, and 2, and a different collection of primes of the forms

20k + 1, 20k + 9; c) for {F,,+1}, all primes of the forms 20k + 13, 20k + 17, and 5, plus the
remaining primes of the forms 20k + 1, 20k + 9; d) all primes enter {F,,}.

Proog: Lucas was the first to prove (i) [10, p. 35]; he also proved most of (ii) [10, pp. 22-
23], though Zeckendorf [13] was the first to prove it in the version given (it is usually
called Zeckendorf's Theorem).

Conolany to the Theorem: Let S and T be primitives "T = AS. If r is odd and not less than
5, and Dy has no prime factors which enter L at odd index, then D; is a multiple of D..

Proog: Apart possibly from 2, the prime factors of L, all enter L at odd index. Since
Iy * Dy = A\*Dg, and GCD(Dg,L,) = 1 (S is primitive, so 2}Dg), Dg|Dyp.

Conoﬁﬁaﬂq: Given primitive sequences S and T, and given », a necessary (but not sufficient)
condition for 'T = AS to hold is that sqf(lDs) = sqf(L,), where for n = e’f, f square-free,
sqf(n) = f.

Proog: 1f 7T = XS, sqf(DrDs) = sqf(A®DsDy) = sqf(Lplp) = sqf(Ly).

The sequence S = (5,18) has Dg = 209 = 11 « 19, and the sequence T = (3,7) has D, = 19,
so that sqf(l;D-) = 11 = L. But we have seen that 5(3,7) = (1,15), which is not a multiple
of (5,18).

The result of the second corollary tells us that characteristic number alone cannot
give us a complete criterion for judging if one sequence is secondary from another. Of
course, this was to be expected, since there are always at least two sequences with the same
characteristic number (unless it is 1).

In the example in the proof of the corollary, everything would work out nicely if we
were to identify conjugate sequences, for S = (8,21), T = (1,5), and 5(1,5) = (8,21). This
will not work in general, however. Consider any Dg;, D-, each with at least two prime factors
apart from possibly 5. Then to each of Dg, D,, there correspond at least two pairs of conju-
gate sequences, and it is easy to envision a "switch" that allows sqf(D;D,) to be equal to
sqf(L,) without any of “T = AS, "T = AS, "T = AT, "T = AS holding.

For concreteness, take Dg = 589 = 19 « 31, § = (7,29). D,= 209 =11 - 19, T = (5,18),
15, L, = 1364 = 4 » 11 « 31. Then sqf(DyD;) = 11 » 31 = sqf(L,), but '°T = 22(3,26),
= 15(8,21) = 2(84,325), while S = (15,37).

From among the four items », A, S, and T (S, T primitive), specification of any two
either determines what the other two must be for there to be a solution to "T = A5, or else
determines that no solution exists.

Example: L, = 167761 = 11 « 101 - 151.

Suppose Dg = 101, Dy = 151. Then AS = ?°T is impossible since 101 + 151 = sqf(D;D,) #
sqf L, = 11 « 101 - 151.

However, since L, = 11, we are led to wonder if perhaps AS could be reached from T in

”
two stages; for example, 151 « S = 1/5(25T). This will be our next topic of investigation.

6. CHAIN-SECONDARY SEQUENCES

m

}2n|n e N} U{1/2n|n e I}
{2n - 1n en} U{1/(2n - 1)|n e N}

Degindtions: T
E
0

13



B=EUO0= {n|nellu{l/nnecn}
X=X U{X}, X=E, 0, or B
T Ter e T(Ten (L0 TN L)), rp E BT

Deginition: A primitive sequence S is a chain-secondary sequence of a primitive sequence T
if and only if there is a chain {iT}f_O of (not necessarily integral) sequences such that

(1) S is the base of ;T, with , T = A,S, A, € @"
(11) T = T
(iii) for each ¢ between 1 and k inclusive, there are A; € B and r, € B such that
.
1T E A ;T
When such a chain exists, we say that S is derivable from T, writing S « T.

Notice that allowing A; € @ would not achieve any greater generality, since we are
free to have as many "links" in the chain with r; = 1 as we like.

The definition in effect allows free substitution of a sequence for its conjugate in
pursuing a derivation from T to S, without going so far as to identify the two conjugate
sequences. We have already seen, following Theorem 6, an example of TP ™TT when r is
odd and r > 5; the introduction of conjugates in fact banishes us from the complete commuta-
tivity we would otherwise enjoy in conjugate-free chains:

Propesition 15:  ®TT =™ET  for r,s € B.
Procd: For r,s e N:
(""Dp = "Tpesg+ "Tn = (Tnwger® Tnsg) + (Tnsr + 1)
= (Tnursat Tnep) + (Tneg+ 1))

= .Tn+r+ .Tn = (P'.T)n
c.l/rT = lr,r, s, ler = lUr,s, r, I/rT = Ur, L

since we now know we are allowed to pass § all the way to the left.
The condition § « T is equivalent to the existence of X, and some A; € B, r, € B, for

=1, ..., kK, Ay € €%, such that
k
(ﬂxi>s.
i=0

Proposition 16: S < T if and only if there is a chain {iT'}f_o of (not necessarily integral)

sequences such that
(i) S is the base of T', with 7' = A4S, A} € @*

11) 7 = 7

(iii) for each 7 between 1 and k'’ inclusive, there are A; € B and r; € @* such that

r! -
AT E LT

(iv) r{ = 1 or r; = 2,
Proof: The operation "( ) commutes with (7) for r € £, by Proposition 5 and the definition
of 1/r( ) for r € N; and we have just seen in Proposition 15 that T( ) commutes with ¢( ),
up to equivalence, for r,s € B. The net effect of our remarks is that any "link" in the chain
for which r; € E—~call it an "even link"-—may be repositioned elsewhere in the chain while
preserving S « I. 1In particular, we may permute the links of the chain so that all even links
occur first, still preserving S « T, provided we do not alter the order of succession of the
remaining links. Even links are trivial, in that apart from altering ;_,T by a factor F,/A;
or L,/XA; they do not affect it at all, except possibly to transform it to its Lucas dual. We
conveniently absorb all of the multiplicative effect of the even links into Aj. We may then
eliminate all of them except possibly for a single link with r = 2, since as an operation the
Lucas dual has order 2.

ro...

%)) & ’1T

Proposition 16: The relation « is an equivalence relation (and henceforth we will write it
as «).

Procg: Reflexivity and transitivity offer no difficulty. If 5 « I, so that (1) holds, then

Vr,, oooy 1 L 1 - ) -
s5=11I1 <3r-) T with the symbol 1/ defined to be ; and T + S.
Lw0 i
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Definition: The equivalence classes into which « divides the set of all primitive sequences we
will refer to as families. The Brousseau number of a family is the smallest of the character-
istic numbers associated with members of the family; the corresponding sequence and its conju-

gate are the founders of the family. We will represent the set of Brousseau numbers by 3.
The set ¥ of $~factors is the set

MU {5mim & M}

where M is the smallest subset of @* containing all odd-index Lucas numbers which is closed
under multiplication, division, and powers.

Examples: L, = 2537720636 = 4 » 11 - 19 » 31 ¢« 97921 gives rise to the following L-factors:
19 - 97921 (since 4 + 11 + 31 = L,.), 31 « 97921 (since 4 * 11 ¢ 19 = LgLy), 31 = 19 - 97921
(since 4 « 11 = L[,L,), and L, itself.

In light of Proposition 16, the condition that S « T is equivalent to (1) holding for
some k and some Ao € @*, A, €5, r;, €0, 7 =1, ..., k, with », = 1 or 2. Converting to the
corresponding necessary condition on characteristic numbers gives

eN

(2) D, 5% ==t - = D
I1 Ly, ‘.722 Il (/23
1/r;eN 1/A;eN
or Dy« 5°% - I1 Ly qg « M anp? =0 - 11 Lim, * q: - 11 A
r.eN 1/A; €N 1/r. el AcEN

with a = 0 or 1; and A = q]/q2 in lowest terms, q, € V.

Propcsition 17: Let S,T be primitive. Let p be a prime which is not an odd-index-entry Lucas
prime. 1If pt|Dg;, then pt|D,, for t e N.

Procg: The only other possibility is that p* is "absorbed" by the denominator of the fraction
on the R.H.S. of (2). Denote that denominator by B?, and tﬁg corresponding numerator by 42,
and suppose that p*[B?, p*|4%. From (1) we know that B™ """'T = A4 « 5. Now, the fact that p

. P o . :
* does not divide any L., r odd, means that no term (7 'T) , written in lowest terms, can

have p as a factor of its denominator, since (M “'r‘T) can incur only Y-factors there.
Hence, p|B implies p|A, because S is primitive; but this leads to the conclusion that p:[DT.
Consequently, a prime of the form 10k * 1 which has odd-index entry in F or even-index
entry in [ is a Brousseau number, for some family of sequences. The product of powers of such
primes is also a Brousseau number, and we will call such numbers Brousseau nwmbers of the first
kind. Every sequence whose characteristic number is a Brousseau number of the first kind is
the founder of a family.
The remaining Brousseau numbers are either products of powers of primes of odd-index
Lucas entry (the second kind), or mixed products of Brousseau numbers of the first and second
kinds (the third kind).

Example: Dp =1, D,y = 41, Dy * Dy 5y= 41. But 41|L 4,,0 and no other Lucas numbers;
hence 41 £ &, so F and (1,7) must be in different equivalence classes.

Exampfe: L,s = 11 « 101 « 151 = Lg » 101 + 151. The primes 101 and 151 are both primitive
prime divisors of L,s, and both have period 50. Each of them is a Brousseau number, but
their product is an Y-factor.

Concllary: Two sequences with relatively prime Brousseau numbers belong to different

families.

Theorem &: 1If S and T are in the same family, then D;Dg is an Y-factor times a rational
square. If S and T are both primitive, then sqf(DyD;) = sqf(R), % an integral &-factor.

Pnoaﬁ: Algebraic manipulation of (2) easily leads to the first conclusion, with, say,

2 s?
1 1 , .
DTEg = I: . ;g—, 21, 22 products of odd-index Lucas numbers, §,,8, N, sl/s2 in lowest

terms. If S and T are both primitive, D,D. € N. Since GCD(sl,sz) = 1, we must have @ [g2
A 2 i 271
Writing 2, as a*b, b square-free, we obtain s, = abc for some 2, and

a’siD:Ds = 2,52a%/0, = 2,a’b?c?a?/a’b = %,a%ic = &,1,c?
and sqf (D;Dg) = sqf(a’siD,Dg) = sqf (£,8,c%) = sqf(%,2,), with 2,2, clearly an
Y-factor.

15



We would like to find a criterion involving characteristic numbers which would enable
us to determine if two sequences belong to the same family or not. We conclude with conjec-
tures in this direction:

Conjecture 1: Ds = Dp =S5 «+ T
Conjecture 2: S+>T <=>D;D; is an -factor times a rational square. It would also be
desirable to have an algorithm to produce the derivation given the Y-factor.

Conjectune 3: p is a Brousseau number => each of the powers of p corresponds to a distinct
family of sequences.
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AN ESTIMATE FOR THE LENGTH OF A FINITE JACOBI ALGORITHM

F. SCHWEIGER
Institute for Mathematics
University of Salzburg, Salzburg, Austria

There are many papers concerning the length of the continued fraction expansion of a
rational number (see, e.g., M. Mendés-France [2]). Following a method given by J. D. Dixon
[1] in an elementary way, an estimate can be given for the length of the Jacobi algorithm of
a rational point.

The Jacobi algorithm may be described in the following way: Let

B={zx=(z,, ..., z)|0<z; <1, 1< <n}
Ifx= (0, ..., 0), then Tx =x. If x;, =+ =2, =0, x,,,>0 for 0 <t <n, then,
T, «oes 0, &, 15 ceesZn) = (0, ovu, 0, 2y o/x, 0 = [Xpya/Tpgq)s ooy Mxpyy - [1/z, 1)
We define z(9) = T9. We say that the algorithm of x has length L(x) = G if
G =min{g > 0 z¢) = (0, ..., 0)}.

Let x(®) = (0, ..., O, méii, cees 288)), then we define
kga+1)= vee = két;1)= 0

k#*D=1 (if ¢ = 0, then k**V = 1)
K= [=f8/x{0, o, kY = (172880

“t+l t+2 t+1l t+1
Af7) =8, for 0<di, j<n
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A"V 0 for 14 <m, 4V

1

1

1
(0+n+ ) EA(3+J)k(n , 0 < 5} < n.

Then, an easy induction shows

n
(e+n+1) (8+7) _(s8)
A; + E A; 5
j=1

n
(s+n+1) Z (s+4) _(8)
A, + A, z;
J=1

for 1 <7 <n.
We want to prove the following

Theorem: Let x = (a,/b, ..., a,/b) € B be a rational point. Then
(1) Let 8 > 1 and 6" + 1 = 8™*!, then L(z) < (log 0) 'log b.

(2) Let 0 < o < 1. Then there is an n = n(oc) > 0 with the following property: Denote by
N(z) the number of rational points x satisfying b < z such that L(x) < n log b, then
N(z) = 0(zn*9).

Remank: Since the order of magnitude of the number of rational points satisfying b < z is
zn+1l the result (2) states that in some sense almost all rational points satisfy
L(x) > n log b.

We first need a lemma, well known for the Jacobi algorithm without "Storungen" (that
means :z:l') # 0 for all g; see O. Perron [3]).

Lemma: For a >0,
(a+n)
n

., A s A(()a-fn)

) =
Proo This is clear for ¢ = 0. Therefore, we put a = g+ 1 > 1. Suppose that
—z—){ = k9 =0, k{¥ =1 and k(%Y —----k(" D =0, k(-1 =1, where 0 < 5 < t.
Tflen the following relations hold (0 < 7 < n):
Aianul)___ A§9+n)k£9) 4 e +A(9+=+1);<£9) + Aff”)

(Agaﬁ-n) , A(a+n) ,

(g+¢n) _ ,(g9=-1+n), (g-1) . (g+8) 1,(9-1) (g+8-1)
A; =4, Ky + e+ 4 ks+1 + A
We introduce the matrices:
M; with rows (A§g+j), cees A,(f”') s A‘(,g+'j)), s < J < m

My, with rows (Aggﬂ*h), ey Af,g+l+h), Aég””’)), t <h < n;

M;il with rows (A§g+h) s e A(,‘g*"h) , Agg*")), t<h<n.
Then Mg has rank n + 1 - s, and M,,; and N’il both have rank n + 1 - t.

Let d = (4(g+"+1) cee, AlEFTED) A(g*'"”)) denote the greatest common divisor. Then 4
divides all (n +1 - %) x (n+ 1 - 1t) determlnants of My,, and therefore of Mg+1 as well.

Now the Laplacian expansion for determinants shows that d is a divisor of all
(n+1-8) x (n+1 - s) determinants of the matrix My;. Repeating the argument, we finally

see that d divides determinants of ¥,, but [det M| = 1.

Proof of the Theohem: 1If L(x) = G, then a;/b = AS;G*"“)/A(OGM”) for 1 < 7 < n. Therefore

b= dGAf)G”‘“). From this, we first obtain

b >4,

(G+n+1) G

B
and

log b > G log 6.
The number of rational points satisfying b < z is smaller ‘than or equal to the number of
allowed algorithms (see O. Perron [3] or F. Schweiger [4]) such that dGAgG*"”)S 2.
+n+l)> kr(ls)

k,(,a) and given kf‘g) there are at most
(k(g) + l)n-l < 2n-l(k'(lg) )n-l

poss%b]).e values for the digits k(g) , 1 <j<n -1, we have the estimate (we write 9, instead
of ki7)):

Since 4 és
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G- logz yreeqpdc Sz

where 8 > n will be chosen. This shows

N(Z) = 0]z Z z(n-l)Gi -‘.i i (q] . qado)ﬂ-l-!

— -

Gin logz q,=1 q;=1 qc-l
n-1 G+1 n-1 n log z (
= 0lz® :E: (2"t + 1 - nY) = 0lze(2" g(s + 1 - m)) " 8 ).
GZN log 2z

We put 8§ = n + £ and obtain N(z) = 0(2°) where
a=n+¢c+n(log (1 +€)+ (n- 1)log 2).
Choosing € > 0 and n = n(g), we may obtain

€ + nllog (1 +€) + (n - 1)log 2] < O.
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SOLUTION OF THE RECURRENT EQUATION u,,, = 2u, = u,_, + u,_; -

JACQUES TROUE
Collége Bois-de-Boulogne, Montréal, Canada

To find the general term of the sequence {u,}, we introduce an auxiliary sequence {v,},
intertwined with {x,} in the following way:
u%><:u%>2:u3 cew Upy Up F Upgq vee
I P R N T

where

Z"n+1 = vn-l + un’
(D

Un+1 = un-l + Vn

It is clear that both sequences are determined as soon as Uy Uy (= U, - u2), and Uys Uy
(= u, - u,) are given. {u,} solves our problem since

Upsel = Upo1 F Uy = Upoz F Vpo Uy = Upog + (Un = Upyy) + Uy
1. Adding the equations in (1) memberwise, we obtain:
Upsa + Uns1 = (un-l + Un-l) + (un + vn)!
which implies that {u, + v,} is a Fibonaceci sequence {F,} whose first two terms are
u, +vy (Fuy -u, +uy) and u, +v, (=u, -u; +u,).

2. Our problem would be completely solved if we would have an expression for u, - v, = €,.
Subtracting the equations in (1) memberwise, we obtain:

Enel En = Ep-1>

= (€,.1 - €,.2) - €,., (replacing n by n - 1 above),
- _En-Z:
= -(-g,.5) (replacing n by n - 3 above),

€pose
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Thus, {ea} is a periodic sequence, with period 6 and
€y =uUy =V U tU, Uy, By U, ~V, TU, U - U, E;, =E, ~E
E, = =€, € = -€,, € = -€,.

3. Hence
Uy + vy = F,

Up = Vp = €, = €[, (where [n] = n modulo 6),
and

u, = 3(F, + €(n)) (n > 4).

Now F, may be written in the form (using the Binet formula):

F, = (u1 -u, + us)N;_z + (u2 -u, + u“)Nn_l,

where N, 1s the integer closest to
_1_(1+/§>"
V5 2

(see, for instance, N. N. Vorob'ev, Fibonacei Nwmbers, Blaisdell Publishing Company, 1961,
page 22).

Remarks: 1. The method used makes obvious the following relations:
Up + Upys = 3(Fy + Fry3) = Fryg,
Unso = Up = 3(Fnsg = Fn) = 25,5, oot .

2. Any sequence {€,} and any Fibonacci sequence are solutions of the given
recurrent equation (directly or by our formula).

Lo a2 o

PRIMENESS FOR THE GAUSSIAN INTEGERS

RICHARD C. WEIMER
Frostburg State College, Frostburg, Maryland

Complex numbers of the form a + b7, where a and b are integers, are commonly called
Gaussian Integers. It can be shown that the Gaussian Integers, denoted by &, along with
addition and multiplication of complex numbers, form an integral domain. One might suspect
that many properties about the integers, denoted by Z, carry over to G. This is indeed the
case, and it is the purpose of this paper to examine the property of primeness in the Gaus-
sian domain. The Fundamental Theorem of Arithmetic states that every integer is either a
prime or can be uniquely factored into a product of primes, apart from the order in which
the factors appear. This theorem also holds for G. It is also true that both G and Z are
unique factorization domains. For Z, the units are 1 and -1, while the units for G are 1,
-1, 2, and -Z. The job at hand, then, is to determine what elements of G are prime.

For each o € G, a * O, where o is the conjugate of a, is called the norm of a and is
denoted by N(a). Thus for a,b € Z, N(a + bi) = (a + bi)(a - bi) = a®* + b?. It also follows
that for a,B € G, N(a * B) = N(a) * N(B).

Since G is a unique factorization domain, any o € G can be factored into a product of
primes. Therefore, suppose o = p, - * «.. * p , where the p:'s (=1, 2, ..., n) are
prime in G. We thus have N(a) = N(p,) * N(p,) » ... « N(p,). Hence, any factorization of
o € G leads to a corresponding factorization of N(a) in Z. As a result, o is prime in G if
N(a) is prime in Z. As an illustration of these results, consider o = 3 + 7¢. Since
N(a) = 9 + 49 = 58 =2 « 29, 3 + 7{ has at most two prime factors having norms 2 and 29.
Those elements of G with norm 2 are 1 = 7. Selecting 1 + 7 and solving the equation
(3+7¢) = (L +Z)(x + Zy) for x and y, one discovers that (3 + 72) = (1 +.2)(5 + 2Z2). 1If
1 - 7 were chosen, 3+ 72 = (1 - ©)(-2 + 57). This appears at first glance to be a differ-
ent factorization, but observe that (3 + 72) = -2(1 - 7)(5 + 27) where -7 is a unit. Note
also that N(5 + 27) = 29. Hence, (1 + 7)(5 + 2¢) is a prime factorization of 3 + 77.

We now have a procedure for determining whether a Gaussian integer of the form a + b7,
a,b # 0, is prime in G. What remains is to find a method for determining whether or not
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an integral prime (a + b7, b = 0) is prime in G. Then the same method would apply for a + b7
when g = 0, since 7 is a unit.

If an integral prime p does not remain prime in G, then p can be written in the form
p = x? + y? where z,y € Z. This can be seen by letting p = o * B where a,B are not units
and o = a + bZ. Then N(p) = N(a) < N(B) implies p2 = N(a) = N(B). As a result, p = N(a),
since p is prime in Z. Hence, p = a? + b®. As a consequence of this result, note, for
example, 2, 5, 13, and 29 are not prime in G and 2 = 12 + 12, 5 = 22 + 12, 13 = 3% + 22,
and 29 = 52 + 22, On the other hand, 3, for example, is prime in G and 3 # xz? + y2 for any
x,y € Z.

A sufficient condition for p € Z to be prime in G is p = 3 (mod 4). To see why this is
the case, let p = 4n + 3 for some n € Z. Assume p is not prime in &. By the result just
established above, p = x® + y?. Thus z® + y? = 4n + 3 implies z° + y? = 3 (mod 4). Now if
2?2 + y®> = 3 (mod 4), z and y cannot both be even or odd. Therefore, without loss of gener-
ality, let x = 2m + 1 be odd and y = 2r be even. Then (2m + 1)% + (2r)% = 3 (mod 4). But
this implies 2(m? + m + r?) = 1 (mod 2), which is absurd. Hence, p is prime in G. As
examples, note 3, 7, 11, and 19 are all congruent to 3 (mod 4) and 3, 7, 11, and 19 are
primes in Z that are also prime in G.

It turns out that p = 3 (mod 4) is also a necessary condition for an integral prime to
be prime in G. If p is an integral prime and either p = 1 (mod 4) or p = 2 (mod 4), then p
is not prime in G. For if p = 2 (mod 4), then p is even and equals 2. But 2 = (1 + 2)(1 - )
and hence is not prime in G. In order to establish the remaining case, the result "If p=1
(mod &), then there exists an x € Z such that x?> = -1 (mod p)" will be used without proof
(see Schockley, p. 139). Let p be an integral prime and p = 1 (mod 4). Therefore, there
exists an x € Z such that 2> + 1 = 0 (mod p). But this implies that p](z + 7)(x - 7). More-
over, if p is prime in G, then either p|(x + ) or p|(x - Z). 1In either case, p = %1, a
contradiction. Hence p is not prime in G. As a consequence of this result, integral primes
such as 5, 13, and 29 are not prime in G since 5, 13, and 29 are all congruent to 1 (mod 4).

If p is prime in Z and p = 1 (mod 4), then p is not prime in G and p = z? + y?; this
being a consequence of the above remarks. Now x + 7y is prime in G since N(z + 7y) =
x? + y2 = p, which is prime in Z. Therefore, to determine a factorization of an integral
prime p in G, one needs only obtain the perfect squares contained in p and test pairwise sums
of squares. For example, consider 29, which is not prime in G. The perfect squares contained
in 29 are 1, 4, 9, 16, and 25. Since 29 = 4 4+ 25, 29 = (2 + 52)(2 - 57).

Y Ym Y
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A NOTE ON ORDERING THE COMPLEX NUMBERS

RICHARD C. WEIMER
Frostburg State College, Frostburg, Maryland

Many order relations can be defined on (. One of the most common orderings is the
dictionary or lexicographical ordering. This order behaves in much the same way that the
words are arranged in the dictionmary. If the symbol " " is used to denote this order
C'(:}” is read "less than'), then (a,b)(:)(c,d) iff a < e, or a=c and b < d. One can
easily verify that(Z)satisfies the definition of an order relation on C. Thus, O 7,

2 +372()3 + 167, 2 + 72 (<)2 + 102, -3 - 2 (K)4, etc.

Another ordering of C closely related to the dictionary ordering is the antilexicographi-
cal ordering. This ordering ([<]) is defined as: (a,b) (e,d) iff b<dor b=d and a < c.
It is also an easy matter to verify that is an order relation on C. '

As another illustration, one can show that A defined by (a,b) A (e,d) iff

Va? + b2 < Ve? + d?, or va® + b2 = /e? + d% and tan~!(b/a) < tan"!(d/c) is an ordering of C.
Thus (1,2) A (2,3) since /12 + 22 < /22 4 32, and (/3,1) A (V2,/2) since /(V/3)? + 12 =
/(V2)? 4+ (V/2)? and tan"(1/V/3) = m/6 tan ! (V2/VZ) = m/4.

As a final illustration, any one-to-one correspondence between ( and the members of an
ordered set can be used to establish an order relation on C or any infinite subset of C,

such as ¢* = {(a,b) € Z x Z|a,b > 0}. For example, consider the natural numbers with the
usual ordering and the following list:
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(1,1) —=(2,1) (3,1) ———(4,1)  +--

(1,2)‘/////(2,2)/////’(3,2)"////(4,2) .
(1{3)/&,3)/(3,3) (4,3)
’/////

(1,4) (2,4) (3,4) (byb) e

By using the above process, it is clear that there is a one-to-one correspondence between G*
and the natural numbers. Thus, this correspondence induces the following order relation [}
onGt: (A1) J e, J@2 O3 de,23da6,n--- . BHere (1,3) [J (3,1
since 4 < 6 (as natural numbers). Note that this ordering is not the dictionary ordering
restricted to G* x G* since (2,2) [ (1,4) and (1,4) () (2,2).

It might also be observed that a field can be ordered as an ordered field if and only
if no sum of squares of nonzero elements is zero (see Jacobson, p. 269). Since 7 and 1 are
not zero and 72 + 12 = 0, it follows that C with the usual operations can never be ordered
as an ordered field.

Although C can be ordered, one should note that C with the order relation C) does not
satisfy the completeness property of the reals. The set

S = {(3,1), (3.1,1), (3.14,1), (3,141,1), (3.1415,1), (3.14159,1), ...},

for example, has (m,1) as an upper bound. But (m,.9) is also an upper bound and
(r,.9) (:)(ﬂ,l). In fact, (m,x) (:)(ﬂ,l) if x (:)l. Since {x € R]x < 1} has no lower

- bound, S cannot have a least upper bound.

It can also be demonstrated that C with the order relation (:)does not possess the
“"Archimedean" property: If (0,0) (:)(a,b) and (0,0) C) (e,d), then there exists a positive
integer n such that (e,d) n(a,b). For consider (1,0) and (0,1). Clearly (0,1) C) (1,0),
(0,0) C) (1,0), and (0,0) (0,1); but for no positive integer »n can (1,0) (:)n(O,l).

It is interesting to note that C possesses a subset G = {a + bi|a,b € Z} that behaves
in a similar fashion to the set Z x Z of pairs of integers; both structures are integral
domains.

It is well known that Z with respect to < (the usual order) is not dense, i.e., between
any two integers there 1s not always another integer. This same result holds true for G.
For example, consider (a,b) and (a,b + 1). Since there is no integer between b and b + 1,

G is not dense.

Between any two integers there is always a finite number of integers under the usual
order. But this is not necessarily the case with the Gaussian integers, G. It is easily
demonstrated that there are an infinite number of Gaussian integers (with respect to C))
between (a,b) and (a + 1,b) where a,b are positive integers. Thus, one can easily deduce
that G* under (:)is not well ordered, i.e., not every nonempty subset of G possesses a
smallest element. On the other hand, by considering the ordering of G* induced by the above
list which establishes a one-to-one correspondence between the natural numbers and G*, one
notes that G* is well ordered with respect to this order.

For the natural numbers, if g < b then ¢ + 1 < b. This property does not carry over to
G*. This can be seen by considering (1,2) C) (1,3). (1,2) + (1,0) = (2,2) and
(1,3) © (2,2).
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THEORY OF EXTRA NUMERICAL INFORMATION APPLIED TO THE FIBONACCI SUM

JEROME HINES
South Orange, New Jersey

In both logic and mathematics the comma is used to represent the ordered and unordered
concepts of and. This equivocation in the use of the comma is bad notation which can lead
to serious problems. It is also unwise to indicate ordering by changing brackets to paren-
theses. To avoid these problems, we will denote the unordered and by the common plus sign +,
and the ordered and by the symbol +, to be called proto-plus. + will be employed as ordinary
addition when it is used with real and complex numbers. Obviously this creates a problem
regarding the use of the unordered and in set theory. For example, instead of the set
{2, 3, 4}, we would be obliged to write {2 + 3 + 4}, which would indicate adding 2, 3, and 4,
yielding 9, which was not the original intention. This problem is resolved by building an
enlightening new set theory out of the properties of its own elements. The first step in
this direction is to introduce ordered multiplication, a noncommutative operation denoted by
the symbol o. This operation will enable us to differentiate between concepts such as '"two"
and "a two" (one of two, or a pair, denoted by 1 o 2). 2 o 3 would then be understood as
"two triples.'" The axioms for + and + will be given later. Next we introduce the concept
of "any counting number,"” denoted by w, where w + w = w. A set containing pencils (p) and
erasers (e) would not be written as {p, e}, but as w o p + w o e. Naturally,
wo2+wo3+4+w e 4 does not equal w o 9. Adding two operations of "choice" (C) and "anti-
choice'" (¢) completes the list of operations necessary for the construction of this new set
theory. One of the interesting consequences of this approach is that the operations of +
(ordinarily denoted by the comma between elements) and union (ordinarily denoted by U) are
one and the same. Many other interesting insights arise from this approach.

The ordered collection "g and then b and then e¢" will be written as g + b + ¢, and we
will introduce a sigma type notation, parallel to the common use of I, for iterated use of

B 000
| |

n
+, to be denoted by 0. O f(n) will then denote f(1) + F£(2) + f(3) + +++ + f(n), and will
iml

be called a proto-sum. If "g" and "b" are real numbers, 'a + b" will be called a proto-
number (as well as a proto-swm). Obviously

(La) a+b+#tb+a
We define proto-minus - by
(1b) a+ (-b) =a-D>

Note that 1 - 1 is not zero, but differs from it only by the extra-numerical information of
ordering. We shall call such a term a proto-null, and, since it is not zero, we can use it
as a divisor. )

We will now present the axioms for + and the proto-numbers. Given a collection of real
numbers R, with elements "g'" and "b'", and a collection of proto-numbers P, with elements

"p'", "g", "»", and "s;" (¢ any counting number), and three operations +, +, and ¢ in R and P,
then

(2a) (Ya) (Yb) a+bekP

(2b) (wp) (vVq) p+tqeP

(2¢) (vp) (vq) p+qeP

(2d) (vp) (vq) pe-qeP

(2e) (vp) (vq) p+qg=qg+p

(2£) (vp) (Vg # P) p+tqg#tqg+p

(2g) (vp) (Vq) prgq=qg-°r

(2h) (vp) (¥q) (Vr) pt(@+r)=(p+qg) +r

(21) (vp) (vg) (¥r) p+(@+r)=(Q@+q) +r=p+qg+r*
(23) (vp) (¥q) (¥r) pr(@-r)=({®--q) r

(2k) (vp) (30) p+t0=0+p=p

(21) (vp) (30) p+0=p

(2m) (vp # 0) O+p#p

(2n) wp)(3 - p) -p+p=p+ (-p) =0

(20) (vp) (vq) (¥r) prlg+r)y=peg+p-r

(2p) (vp) (¥s:) p - CJ’1 (8;) = ~01 (o * &)

*+ has precedence of operation over +.
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We would like to add the axiom
(2¢) Wp # 0)(3p'1) p'l cp=p - p-l =1

but we need extra concepts to deal with the multiplicative inverses of O + 1 and 1 - 1.

The case of O + 1 can be handled by introducing the ordered operation retro-plus,
denoted by 4, which has an axiomatic system which is the exact mirror image of the axiomatic
system developed for +, with the condition that

(3a) 0+ (1L40) =1

Then we can deal with retro-numbers which are ordered from right to left instead of from
left to right. It follows that
1

and we find that 0 4+ 1 is the multiplicative inverse of 0 + 1.

Before discussing the multiplicative inverse of 1 - 1, we must have more tools to work
with. By the above axioms we can show that

n n n
(3C) ag (ai + bi) = O'ai + O b.,:
i=1 i=1 i=1
n n n
(3d) g <ai + bi) = 0O a; + O bi
i=1 i=1 i=1
m z Z m
(3e) o .q, = g .a;
n
n m m .
(3f) O O ia;=0 E(i-a'+1a.y' e, nai), where "2, =1, 0< i <m*
J=1 <=1 1=1 j;l =0, 02i>n
m n _ m m n
(3g) (gl ai>- (J‘_Tl b¢> =0 (ai-jn * by e gt ZJ‘)
Jg=1
(3h) (a + b)!" =Z‘(;’1 r! ar-i+lb‘l:-1
G le-T+Dz -

The binomial expansion is an operation between ordered sums and equation (3h) is its
only legitimate expression. In this treatise we will only consider sums generated by the
binomial expansion, giving us the basis for a theory of rational proto-numbers.

Another common operation between ordered sums is long division, and it must be con-
sidered a proto-algorithm. Henceforth we shall refer to it as proto-division. It turns out
to be the operational inverse of the proto-multiplication given in equation (3g). As an
example of equation (3g),

(31) (L +2+3) + (4+5+6)
=14+ (Qe5+24)+(L+6+2c5+3c4)+(2¢+6+3+5 +3-+6
4+ 13 + 28 + 27 + 18

The following demonstrates that proto-~division is the inverse of this operation:

4+ 5+ 6
(33) 1+2+34+13+28+27 +18

‘ T4+ 8+12+ 0+ 0

5+ 16 + 27 + 18

5+10+ 15+ 0

6 + 12 + 18

6 + 12 + 18

. 0O+ O

Given the proto-numbers p, g (# 0), and r, we define
(4a) r=p:q==E
q
p,r_p*s+qg-r

(4b) g+ 3 s

*The coefficients "2, can be more generally developed, but space does not permit further
discussion. 23



py,r_prs*qg-r
(4c) R s
(4d) p,r_p-r
q & q-*s
(4e) p_r_p-s-q-r
q s q-s
(4f) B‘r—= ¢« 8 - « P
q s q * s
p.r_p-s
(48) g s q-r

We will adhere to the additive index law for real powers of proto-numbers where, for
myn € R,

(4h) pn=|p-papn. cee op‘
(41) pm . pn = pm+ﬂ
(43) p" +pt = E: = pm-n
p
(4k) p’ =1

Probably all ordered summation processes are related to this axiomatic system. For
example, we cannot consider any specific infinite sum without ordering its terms. Thus,
all infinite series as commonly used are actually infinite proto-sums, Consider the
following example:

1 =~ o1
(5a) T -le
<

which should be written as

1 &ai—l

(Sb) 1=+a i=1

”

In equation (5a), 1—%—2 is the total of the infinite sum and is a real number if "g@" is real.

This sort of expression fails to differentiate between a sum and its numerical total. In the

T 1 P is not a real number, but a proto-number.
To find a numerical total for the infinite proto-sum in equation (5b), we must devise a means
of relating terms such as T i 2 and 1 i p This is not as simple as it appears, and requires
a study of both the null and infinite proto-numbers.

To define infinite proto-numbers, we must consider the multiplicative inverse of the
simplest proto-null 1 = 1. Let us begin by denoting the multiplicative inverse of 1 = 1 by

ﬁ,* which we will call proto-#. Then
1

case of equation (5b), we must remember that

(6a) m=7-5=0Q-D"'

(60) R R e s e

Similarly, we can show that

(6c) " -~ "= m" !

We can also prove that, as a consequence of the axiom in equation (2q),
(6d) n=1+1+1+"

*¥ is the letter for yee in the Russian alphabet.
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We could have anticipated this result by dividing out 1 i 1 by proto-division, and it can be

shown that such a division in a proto-system leaves no remainder. Similarly, there is no

1
1-2 to get the result in equation (5b).
Because of this, it is easily seen that the proto-binomial expansion in equation (3h) is true
for all real values of a, b, and r, in a proto-system. Surprising as this result may be, we

must bear in mind that an equation such as

remainder in a proto-system when we divide out

1 _ = -1
(6e) T3 = g2

i=1

is not a contradiction since ——};72 # -1,

1 -
We are familiar with sequences having an open end; i.e., an infinite number of terms
such as f(1) + f(2) + «++- + f(n) + --- . Sequences having unique first and last terms, with

an infinite number of terms in between, are less familiar, but have been employed, for exam-
ple, by Cantor and others. We will say that sums and sequences of this sort have open

middles.
Using an infinite proto-sum with an open middle, we define the intrafinite integer " by

"

(6£) l.".=t-c."1(l)='1+1+1“+---+1‘
Then we introduce a prineciple of substitution for M such that, if
(68) gtn) = @ £(2)
then
(6h) gl = 1,(l_;'lf'(i)

For f(2) = 7 this becomes
(61) g(H)=ioﬁ"i=l+2+3+4+---+n

-1

For every term in this proto-sum, up to and including M, we can associate its value with its
rank. Obviously we are not dealing with the class of natural numbers, since the natural
numbers are all finite in size, despite the fact that there are an infinite number of them.
We will call our collection the amorphous intrafinite numbers.

Henceforth we will abbreviate z; by O and will always use it in place of O , which
i=1 i i=1
is actually meaningless due to the ambiguity of «. We could, in a sense, interpret ¥ as
being the number of all counting numbers.

Now we must construct a system of numeration of radix (base) M. Note that a system of
numeration is also a form of proto-math. In a system of numeration of radix I', we proto-add
"ones" T times, and then proto-add another T "ones,'" etc. The empty frame, with T positions
to be filled by "ones'" in such a system of numeration, will be called a Collect® of radix T.

n
If n < T, then O (1) will be called a proto-digit, to be written as n; i.e.,

i=1
n
(63) . o1 =n n<T
i=1
By choosing a system of numeration of radix WU for a general approach, all infinite sums
will be considered as Collects of radix ¥, as well as all finite sums; i.e.,

-n

(6k) O F(G) = F(1) + F(2) 4 +- + F() + 0+ 0+ «ov 40
i=1

1

where the right-hand proto-sum will have ¥ terms.

*Pronounced kélekt.
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Notationwise, we will use the following convention:

(61) g’f(i) FQ@) + fQ2) + f3) + «-+ + f(W)

F@) + fn) + £F3) + «+v # f(n) + -+

employing either the open end or open middle notion as desired, considering them as equiva-

lent.
By equations (3g) and (6d), we can show that

(6m) ur = 1 =?-[ (r+7 - 2)! ]

- 1 - 17 (r - 1) (2 - 1)!
and
_ » L ( 1)'L'+l.,,|
(6n) = (1-1) 0'[(1, YA 1)']

In order to obtain totals for infinite sums, we must relate proto-sums to their corre-
sponding unordered sums. To do so, we must delete all information concerning ordering,
introducing a certain degree of indeterminacy, so one can no longer differentiate between
+ and +. To accomplish this, note that

——n—
(60) 0+ - +0+a=qg-+ (0+1)" =al-u"H"

Then, given (r a; M , we see, by equation (6n) that
i=1
m

m
(6p) o an’= Zaig” + B

=1 i=1

where B is a linear, unordered sum of powers of M, all less than p. If we drop all terms
of lower potency than H there is no distinction between + and + (this reasoning also holds
for m = n, provided the proto -total of (ﬂa Hp contains no term of potency greater than Hp)

Setting (741 nf'equal to :Z:a H , we have introduced a certain indeterminacy concerning all
i=1
additive terms of potency less than !p. Such a relation will be called a reduced equatzon,

or an isonomic relation, which we will denote by a 'p" under the equality sign, whence

m
(6q) o a;u’ = Eai»_x_p
i=1
i=1
m

to be read, ' O'a WP is isonomic to Eai wP, in a reduced equation of order p."
i=1 =1
Now, to relate M” and WU”, we must take into account the missing remainders which are
peculiar to proto-math. The following example demonstrates the problem:
Applying the prineciple of substitution of U to

n

, _n(n+1)
(61) Z-b =22l
=1
we have
< v oon
(6s) Yi-&+1

i=1
This is the unordered sum that corresponds to the proto-sum @< in equation (6i), which has

1
as a proto-total ﬂz. In a reduced equation of order 2, n2/2 + n/2 becomes n?/2 and we are
forced to conclude that

2
(6t) Zos oyt
More generally, we find that
(6u) W= riyr

26
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a result that can be derived from consideration of equation (61) and its unordered counter-
part. The same result can also be derived from consideration of the missing remainders in
multiplication of powers of ¥, but present space does not permit this. We would expect to
find a relation between ¥~ and W7 corresponding to equation (6u), but this has not been
accomplished yet. So we will take equation (6u) as our definition for ¥, for r > 0.

Now we must investigate the type of proto-sum generated by dividing our 1/1 - aq by
proto-division, where Ial > 1. As in the case of equation (6e), we are faced, in reduced
equations, with the enigma of absolutely divergent sums having finite totals. This result
demonstrates that numbers of such magnitude as 2" cannot be dealt with realistically using
summation, but necessitate the use of infinite products. That would be beyond the scope
of this present work, but note in passing that it can be accomplished through the use of o,
the operation of ordered multiplication, based upon the following additional axioms for the
collection P of the proto-numbers:

(7a) (vp) (Vgq) peqgeP

(7b) (Vp)(Vq # p) P oeg=qgop .
(7¢c) (Vp)(Vq)(VI’) p (q or) = (p . q) or=pesgor
(7d) (vp) 30) pe0=00ep=0

(7e) (vp) (Vg) (Vr) (p+q) er=por+q or

(7€) (vp) (vg) (¥r) (p+q) or=poeor+qger

(7g) (vp) (vg) (¥r) pol(g+r)y#poqg+por

(7h) (vp) (vg) (¥r) pol(g+r)#pogqg+poer

(71) Wp) pel=p#1loep

(73) (Wa € R)(Wb € R) aobeP

(7k) aob=a-p"*

These axioms enable us to include proto-numbers as exponents.

It is also easily seen that

(71) Clb o af = ab+c

(7m) 1o¢g=q0*l

(7n) 2 o o d=al

(70) a o (b ° c) = (a o B) o (1 o C)

(7p) (@ ok) o(ced) =1lae B« c)]eo (1 od)
—n —

(7q) aZ o e 0o gl =gl

(7r) ]_gE (a o b) = lg,a + lgeb

In the case of proto-sums generated by proto-division such that

1 i-1
——— = N >
Tz -9 la] > 1
the results obtained by employing reduced equations are all self-consistent within the
system. Take the case of equation (6e): this reduces to

n
(8a) Y2ttt s
=1

(We treat this case as a reduced equation of order 0, since all such absolutely divergent

sums act as though they were convergent; i.e., having zero-order totals.) This is why we

say, as in equation (8a), that this properly divergent sum is Zsonomic to -1 (not equal to -1).
v

This means that, in the proto-system, :E:(Z"l) has the same properties, or obeys the same
laws, as -1. i=1

As an example of this consistency within the proto-system, consider the following:
Dividing a convergent sum by an absolutely divergent sum should give us a reduced total of
zero, as in

*« has precedence of operation over o.
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-1
T L ilogerh <1 -lan < 1. Y2 ) - 11
g%l) 2 k 2 2k 2 2\2 -~ 1 2 -1

which obviously reduces to zero, as anticipated.
V.

—

(8b)

1f, instead, we claim :E:Zi'l to have the properties of -1, then proto-dividing q(z'i)
1
. 1:-1
by G(ZJ'l) should produce a result that reduces to -1, since the first sum converges to 1.
Indeed, by proto-division,

o)

£ 7 _ 1. 3 \_1. 3400k _£-2< 1 )_1-2

(8c) iy | 2 ?(2“1) 727292 =55 \717)" 71
i

which reduces to -1, as anticipated.
All absolutely divergent sums of the type

=ga’-l, |a| > 1

(Sd) l-=aqa 1

which behave as though they were convergent in reduced equations, will be called co-vergent.
The Fibonacci sum Of(Z) is generated by proto-division thusly:
1

= () = 1
(9a) F = ?7(1) -
Since
(9b) 1—1-1=<1.._1+2/5_),<1_;1-2/§>
then
3 1
(9¢) ar@@) =

<1_1+2/'5“>‘ <l_‘1—2/§)

whence the proto-Fibonacci sum is the product of two proto-sums:
i-1
(9d) e =Q-M
1 i 2

and

i-1
=) ]

e, is a co-vergent proto-sum, while ¢, is an alternating divergent proto-sum. In reduced
equations of order zero, both sums are isonomic to finite numbers:

2
(9f) e, = ——
YY1+ s
and
(9g) . c:—._z___
21 -/

As one could anticipate, the product of these two '"totals'" is -1, the same as the reduced
"total" of the Fibonacci proto-sum.

Let us form a new proto-sum by proto-adding every other term of the Fibonacci sum,
beginning with the first term, to be denoted by F,. Then let us form a second one by proto-
adding every other term, beginning with the second term, to be denoted by F,. Then

(9h) F,=0f(7 - 1)
and
(91) F, =g’f'(2i)

It is easily seen, by proto-division, that

1-1

(93) S Sl e

and
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1
(9k) Fo=17331
whence
(91) F, =W- F1

In reduced equations of zero order, F, will be isonomic to O and F, will be isonomic to -1.

For notational simplicity, let us introduce @; defined by

(9m) 2; = 1, for an odd integer
= 0, for an even integer®

Next, let us define F| and F] by

(9n) Fl = g[aif(i)]
and
(90) Fj =0le,f(i + 1))

Obviously, F{ is the proto-sum F, with zeros inserted between all of its terms. The same is

true for F] and F,. It follows that
©“p) Fl #F} =F

In zero-order reduced equations, the sum of the "totals" of F] and FJ] should be -1, the
"total" of F. In substantiation of this, it is easily seen, by proto-division, that

1+0-1
! =
(%) =13 0=-3%0+1
and
(91) F! = L
2 1+0->3+0+1
Note that
(9s) 1+0-1=(1+1)@A-1)
and
(9t) 1+0-3+0+1=((1-1-1)1+1-1)
The above equations substantiate equation (9p), since
1+0-=1 1 (1+0-1) +1
4 I = =
(9u) Rt " T3 0-3%0-1"T+0-3+0-1 1+0-3+0%+1

1+1.1 _ 1 ~
"A-i-Da+i-D 1-1-1-F [by (92)].

If we define the alternating Fibonacci proto-sum F-by

(9v) F=g[-D )] = 71—

it follows, by equations (9q) and (9r), that

(9w) Fl=@1Q1+0-~1F}

whence, by equations (9a2), (9r), (9s), (9t), (9v), and (9w),
(9x) Fl=@Q+1)(1-=1) +F-«F
Similarly,

9y) F} = F .« F.

Equation (9a) reduces to

(92z) F=-1

and equation (iv) reduces to

(10a) f-§ 1.

Then, from equations (9x) and (9z) and (10a), we see that
(10b) Fl =0.

*The concept of 2 can be generalized for some complex series.
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Similarly,

(10c) Fé = -1

whence

(104) Fl +F] = Fl +F] = -1.

Comparing (9z) and (10d), we find another substantiation of (9p).

These operations on the Fibonacci proto-sum show how proto-math opens new vistas of
research on infinite sums. It gives us the beginning of a nonconvergency approach to the
summation of infinite series, and some of the classical methods of summing divergent series
will be special cases of proto-math, one example of which is Cesaro's method. This is true
since the sum of the partial sums of an infinite series is simply the operation of multiply-
ing that proto-series by

(11a) Y= o).

In proto-math, the laws for regrouping terms in divergent series are easily found, and
they vary according to the orders of the reduced equations. Given proto-sums, whose "totals"
are linear sums of positive powers of M, we can find these totals by inspection of the nth
terms. We can develop the differential calculus using 1 - 1 instead of infinitesimals,
freeing us from the need for limiting processes. Indeed, it may even be possible to develop
most of our present-day mathematics without recourse to limiting processes.

There seems to be a vague similarity between the approaches of proto-math and Non-Stand-
ard Analysis, but instead of using hyperreal numbers and infinitesimals (which lie on the
real line, we use proto-numbers and proto-nulls (which do not lie on the treal line). There
is no Standard part for the infinite numbers in Non-Standard Analysis, but with our isonomic
relations we seem to have achieved a generalization which enables us to enter the infinite
range and deal with it in a realistic fashion.

There also seems to be a vague similarity to Cantor's work on the infinite, but there
are many important differences. For example, in a proto-system of numeration of radix
(base) ¥, the number of digits is not the same as the number of rational numbers constructed
from these digits, in distinct contrast to the Cantorial system, where the number of natural
numbers cannot be distinguished from the number of rational numbers. Also, in the proto-
system, rearranging the terms in a divergent sum gives us the same 'total" as in the original
sum. The need for order types and ordinal numbers does not arise.

Eventually, expressions such as

(11b) 192(0) = o
and
(11c) T'(0) = =

can surely be rendered obsolete, and expressions such as

Cl4ieledala...

(11d) PR =¥

can be given a rigorous foundation.

Since we have not basically employed set theory in the development of our infinite con-
cepts, and this is a non-Boolean approach, we should expect major departure from the classi-
cal approach.

Granted that this work is still in an embryonic form, there is much yet to be done in
firming up its foundations, but the promise in its unusual results and self- con51stency make
it worthy of further investigation.

Wb
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THE PENTANACCI NUMBERS

PAUL N. MENDELSOHN
350 E. 87th St., New York, NY 10028

The elegance of the Fibonacci sequence lies in the fact that its simple definition gives
rise to a multitude of properties. Similar qualities can be found in a Pentanacci sequence
defined as:

Py = 0

Py = any five chosen integers, n = 1, 2, 3, 4, 5
n-1 .

P(n) = Z P(m), n>5

m=n-5
The generalized form of a Pentanacci sequence is, therefore:

Py g, ry 8, t, (p+g+r+s+t), (p+2g+2r+2s+2t), 2p+ 3qg + 4r + 4s + 4t), ...

We will consider the specific Pentanacci sequence in which p =g =»r» =g =t = 1. This
series begins 1, 1, 1, 1, 1, 5, 9, 17, 33, 65, 129, 253, ... .

There is a simple recursive function for finding the sum of any »n consecutive Pentanacci
numbers. By definition,

N
ZP(n) > Pysps V> 5,
n=1

since

+ P, + P

@ t o T Byt Byosy t E +Fy-unt P

(1) (2) (N=-2)

P + P, + P,

> P w-» T Ew-zy ¥ Bw-ny

(N-4) +

= Py

+ Py

When we subtract P(N_,‘) + P(N_3) + Py + Py-p t P(N) from both sides, we arrive at

P(l) + Py + Py * o0 P(N_s) > 0. This immediately leads to:
N N-5
Zp(n) = Byt Zp(n) » N> 5.
n=1 n=1

In general,

-
o)

N M-1
w0 = 2B — 2 P
k=1" 7 k=1
N-5 M-6
= Fyen+ ;Pm = Py - :L;l Pay -

THE PENTANACCI RATIOS AND THEIR DEFINING FIFTH-POWER EQUATIONS

It is well known that the ratio of two consecutive Fibonacci numbers, I‘(n+1)/F(n) ,

approaches the limit L-’-z—/g = 1.618034 and its reciprocal approaches % = 0.618034.

These limits are the roots of X2 = X - 1 = 0. The ratio of two consecutive Pentanacci num-
bers, P(n+1)/P(n) , approaches the limit 1.9659482 and its reciprocal approaches 0.5086604.
These ratios are the only real roots of the fifth-power equation X° - X* - ¥3 - ¥2 - x - 1 = 0.
By definition, Pu+1y = Poy t Pn-1y ¥ Pin-ay + Po_3y* Py Dividing through by P(n_l) ,
we define:
By ! Bn -1y = 2

- 72 =

P -1y/Fn-3y=22 = 21 = Pinay/Fn -1y

Pn-1)/Pn-4)=23 = 2

This gives us 2% - Z, + 1 + 1/2, + 1/2% + 1/2}, from which the quintic equation,

—_—

25 - z4% - 2% - 22 -7 -1=0, is derived.
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CONTINUED FRACTION EXPANSION OF PENTANACCI RATI0S

The ratios B, +1y/Pw) and P,y/F, +1) can be expressed as finite continued fractions in
order to demonstrate that they are rational numbers. In general, a continued fraction may
be represented as:

a, +1
a, +1
[al, a,, a,, eedl or a, +1
a, +1

The terms, a;, are known as partial quotients. A finite continued fraction has a finite
number of partial quotients and represents a rational number. Infinite continued fractions
have an infinite number of partial quotients and represent irrational numbers.

It can be seen that:

(A) Pusy/Bmy = [1, aps ays a,s «vvs ayl
(B) P(n)/P(n+1) = [O, l, a3, a", ceey an+1]

In equation (b), a+1) is the same as the a; of equation (a) for all k, 1< k < n.
Consider a/b, where ¢ > b and both g and b are integers.

alb =¢ + alb - ¢,
a/b =c¢ + (a -ceb)/b
or
(%] alb=c+1
_b
a - chb

This can be expanded further.
Now consider b/aq, where g > b and both g and b are integers.

bla =0 + b/a,
S0
(D) bla=0+1
a
b

Applying equation (C) to equation (D) gives rise to

(E) bla=0+1
c

This also can be expanded by further manipulation of the b/(a - ¢b) term.
THE GOLDEN RECTANGLE AND INTERMEDIATE SEQUENCES

Another property of the Fibonacci sequence is that two consecutive Fibonacci numbers
represent the lengths of the sides of the Golden Rectangle. A Golden Rectangle is shown in
Figure 1. Segments creating smaller Golden Rectangles and a square are included in the
figure. The lengths of the sides of all the quadrangles are Fibonacci numbers.

A similar Pentanacci rectangle is shown in Figure 2. Note from Figure 2 that
a =Py = Ppu-1y» b= Pp_1)= Pn-2)s @ =Pin_2)= Pin-3ys @ = Pu_3) = Py and
e =E, 4~ Pp_sy- 1In the Fibonacci sequence Foy = Fn-1) = Fn-2)- In the Pentanacci
sequence, however, F,) - Po1—1)# Py-2)- By subtracting two comsecutive Pentanacci numbers,
a new sequence called an Intermediate Sequence is formed.

The first few members of the Pentanacci sequence and of the first two intermediate
sequences are:

1,1, 1,11, 5, 9, 17, 33, 65, 129, 253,
o, 0, 0, O, 4, &4, 8, 16, 32, 64, 124,
o0, 0o, 0, 4, 0, 4, 8, 16, 32, 60,
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P
P (n-5)
F(n-l) Fimz) P(n-l) P(n—a)(n{/')
e
Bin-3) -
F
Bn-2) (
¢ Fin'- 4y
F
(n-1) Qn-z) %n-l)
Fin-3) qn-q b
ﬁn) ﬁ")
FIGURE 1 FIGURE 2
It éan be shown that each intermediate sequence is a Pentanacci sequence. From the

definition of the Pentanacci numbers:
Fx+1) = By + P-1y ¥ F-y + P-3 + Pix -0y
Py = B-1 F Px-2y + Bx-3) ¥ Bx-iy ¥ Pr-sy
So, Pu+1) - Py = Py = P -5) for k 25, and for k < 5.
Given the following equations:
Fx+1) = By = Py = Pk -5)
Py = Pax-1 = Pae-1) ~ Px-6)
F-1y = Pak-2) = B2y = Px-n
F-2) = B-3 = F-3) = P -
Fa-3 = F-wy = Bx-0) = Px-9

k-5

k
The sum of the right-hand side terms is P,y - P, which is equal to P -~ P4y
(n) (m) (k +1) (k -4)

n=k-4 mek -9

the sequence member following Py - Fi -5y as defined by the definitions of both the Pentanacci

sequence and an intermediate sequence.

The sum of the right-hand side terms, Fy.jy - Px-4), also equals Py ) - Px+1), the
difference between the next two members of the Pentanacci sequence. Hence, we have shown,
by applying the definitions of the Pentanacci and intermediate sequences that the latter is

a subset of the former.
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REMARKS ON THE DIOPHANTANIAN EQUATIONS a? + ab + b® = ¢?

GEORGE BERZSENYI*
Lamar University, Beaumont, Texas

The present note is concerned with properties of ordered triples (a,b,c) of nonnegative
integers which satisfy one of the two equations given in the title. Such solutions of

(1) a® +ab + b? = ¢&°
will be referred to as obtuse Pythagorian triples; the corresponding solutions of
(2) ‘ a? - ab + b? = ¢?

will be called acute Pythagorian triples. If a, b, and ¢ are relatively prime, the triples
will be termed "primitive."

These two Diophantanian equations arise in a variety of ways; as it will be shown, even
the Fibonacci numbers can generate and be generated by solutions thereof. The following prob-
lems will further exemplify this diversity. The reader is encouraged to pursue them at least
to the point of recognizing their relevance:

1. Find three Pythagorian triangles of the same area. This problem was resolved by Euler
in about 1781 [3].

2. Find solutions for the Diophantanian equation z? + y2 + 22 =242, 1In doing so, A. Ger-
ardin [4] resolved several other equations as well.

3. Find three squares as consecutive terms of an arithmetic progression with common differ-
ence k. This problem along with its ramifications was discussed by R. L. Goodstein [5].

4. Remove a square of side x from each corner of a rectangular cardboard so that the remain-
ing portion can be folded into an open box of maximum volume. What dimensions for the
rectangle yield integral x? The first part is an old calculus problem probably dating
back to Lamb [8] or earlier.

5. Find fourth-degree polynomials with integral coefficients whose extrema and inflection
points have integral coordinates and are easily found (i.e., the constant term of the
first derivative is zero).

6. Find integral triangles (triangles, all of whose sides are of integral length) with a
60° or 120° angle. According to Dickson [3], this problem was first considered by A.
Girard, whose solutions were rediscovered dozens of times over the past three hundred
years.

In fact, except for rediscoveries of various formulas generating their solutions, the
Diophantanian equations under consideration are almost totally neglected in the mathematical
literature. We hope to fill this gap at least partially. As a basis for the results to fol-
low, we restate here without proof a procedure that was originally given by Zuge [13] in a
slightly different format:

Representation Theorem: Let m and n be relatively prime positive integers of different
parity and assume that 3Im. Let (a,b,e) = (4mm,2mm + ]mz - 3n2|,m2 + 3n2%). Then all primi-
tive acute Pythagorian triples are either of the form (a,b,c) or of the form (|a - bl,

max {a,b},c) and all primitive obtuse Pythagorian triples are of the form (|a - b|,

min {a,b},c).

During the course of this work, using this representation theorem, a computer program
was prepared by Russell Still, an undergraduate student, generating all primitive acute and
obtuse Pythagorian triples for which m,n < 50. The author's gratitude is hereby expressed to
Mr. Still for his valuable assistance. Copies of the printout are available from the author
upon request.

The three types of triples given by the representation theorem may also be related by
observing that if (a,b,c¢) is a solution of equation (1), then both (a,a + b,e) and
(a + b,b,c) will satisfy equation (2). Consequently, in light of the geometrical interpre-
tation afforded by Problem 6, they may be obtained from one another by the addition and/or
subtraction of equilateral triangles. We shall further utilize this geometrical interpreta-
tion in regarding the triples as triangles and, in particular, in referring to ¢ as the
hypotenuse and to a and b as the legs of (a,b,c).

We first observe that since m and »n are relatively prime, of different parity and 3Im,
the pair (m,n) must be congruent modulo 6 to one of the following pairs of numbers: (1,0),
(1,2), 1,4, (2,1, (2,3), (2,5, (4,1), (4,3), (4,5, (5,0), (5,2), (5,4). Simple

*Partially supported by Lamar Research Grant 16530.

34

"S- enmr



A A A A A A A J

calculations show that in each case m? + 3n% = 1 (mod 6), that is, the hypotenuse of primi-
tive obtuse and acute Pythagorian triples is always of the form 6k + 1. This proves a
conjecture by McArdle [9].

In fact, not only ¢, but every divisor of it must be of the same form. To prove this,
let p be a prime divisor of ¢ = m* + 3n®, Observe first that p # 2 since m and n are of
different parity, p # 3 since 3Jm, and pJm and pfn due to the relative primeness of m and n.
Consequently, by raising both members of the congruence m? = -3n® (mod p) to the (p-1)/2th
power and upon applying Fermat's theorem, one finds that (-3)?-1/2 = 1 (mod p).

Assume that p = 6k + 5. If k is even, say k = 2s, then 3%°%? = 1 (mod 125 + 5) follows.
If k is odd, say k = 2s - 1, one similarly obtains 3%°°”! = -1 (mod 12s - 1). Since both of
these conclusions are contrary to known facts (see, for example, Theorem 20 on page 32 of
[10]), the assumption that p = 6k + 5 is indeed untenable.

Conversely, if ¢ = 6k + 1 is a prime, then it has a unique representation of the form
m® + 3n® (see, for example, Theorem 5 on page 323 of [12]). Such m and » must clearly
satisfy the restrictions stated in the Representation Theorem, hence each prime must appear
as the hypotenuse of exactly one (two) primitive obtuse (acute) Pythagorian triple(s).

This last fact may be connected to a slight extension of Girard's results mentioned
earlier, to conclude that each prime number of the form 6k + 1 is uniquely expressible in
both of the forms x’ # xy + yz, where x and y are positive integers. For example, one’
finds that the representations

7=1%241+2+2%=1%2-1+3+ 32,
13=1241+3+43%2=12-1+4+ 42, and
19 = 22 + 23 + 32 =22 - 2.5 + 52,

are unique.
If ¢ has r distinct prime divisors, each of the form 6k + 1, then repeated application
of the well-known formula

(3) (m3 + 3n3)(m3 + 3n3) = (mm, * 3nn,)? + 3(mn, * myn,)?

will yield exactly 27" ! (2") primitive obtuse (acute) triples with hypotenuse c¢. Correspond-
ingly, ¢ will also have 2"~! representations of each of the forms x? * xy + y?. Equation (3)
may also be regarded as a method of obtaining new triples out of old ones. Another such
method is afforded by the matrix

-3 7 1
M=115 5 17 |;
8 2 20

if (a,b,e) is an obtuse Pythagorian triple, then so is (a,b,c)M—viewed as a product of
matrices.

Obtuse and acute Pythagorian triples may also be generated from Pythagorian triples by
matrices. If we define

2 =2 -1 2 1 0 -1 1 0
N=|1 1 0}, kK= 0 2 -1}, L-= 2 2 -1,
-1 1 2 0 -1 2 -1 -1 2

then (a,b,e)N is an obtuse and (a,b,c)X and (a,b,c)l are acute Pythagorian triples whenever
a? + b%? = ¢2, Since N, K, and L are nonsingular, their inverses can also be utilized in
transforming our results into the pythagorian setting.

The well-known [11] mechanical generation of sequences of Pythagorian triples from
(21,220,221) and (41,840,841) by a systematic insertion of zeros may also be paralleled;
each of the six sequences of triples given below are obtuse Pythagorian:

(120, 23 , 133 ), (129 , 391 , 469 ),
(10200 , 203 , 10303 ), (1209 , 39991 , 40609 ),
(1002000, 2003, 1003003), ...; (12009, 3999991, 4006009), ...;
(81 , 1599 , 1661 ), (41 , 399 421 ),
(801 , 159999 , 160401 ), (401 , 39999 , 40201 ),

(8001, 155999999, 16004001), ...; (4001, 3999999, 4002001), ...;
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21 , 99 » 111 ), (80 , 19 , 91 ),
(201 , 9999 , 10101 ), (9800 , 199 , 9901 ),
(2001, 999999, 1001001), ...; (998000, 1999, 999001), ... .

Other interesting sequences of obtuse and acute Pythagorian triples were discussed in
two earlier notes by the author [1l, 2] in a more geometric setting. Still other modes of
generating infinite sequences (ak,bk,ck) of primitive obtuse Pythagorian triples with special
properties are depicted in the tables below.

On the basis of Table 1, one may prove, for example, that there are infinitely many
obtuse Pythagorian triples whose legs differ by unity. The proof of this fact has been
posed by the author as a problem in The Fibonacei Quarterly in a slightly different
setting. The corresponding problem concerning the existence of acute Pythagorean tri-
ples (a,b,c) with a = b = 1 has a totally different solution: there are no such triples.

The proof of this fact is also left to the reader.

k m n a b e

1 1 2 8 7 13

2 13 2 104 105 181

3 13 28 1456 1455 2521

4 181 28 20272 20273 35113

5 181 390 282360 282359 489061

6 2521 390 3932760 3932761 6811741

7 2521 5432 54776288 54776287 94875313

8 35113 5432 762935264 762935265 1321442641

TABLE 1

In Table 2, a, - by = 2 for each k. Again, an infinite number of such triples can be
recursively generated from the ones displayed. It may also be noticed that each my _; (ny)
of Table 2 is twice as large as the corresponding m,, _; (n,) of Table 1, thus the two
tables could be obtained from one another. The proof of the fact that in each case my = ¢,

reveals some analogy to the well-known Fibonacci identity F, ., = Fﬁ + F:+1'

k m n a b c

1 2 1 5 3 7
2 7 4 57 55 97
3 26 15 781 779 1351
4 97 56 10865 10863 18817
5 362 209 368517 368515 908287

TABLE 2

Continuing with the obtuse case, one may further observe that for each k = 2, 3, 4, ...,
there exists a primitive obtuse Pythagorian triple (a,b,c) for which ¢ - b = k; in fact, one
such triple is given by

(2k - 1, 3k?* - 4k + 1, 3k?* - 3k + 1).
If, in addition, kX is not a multiple of 3, then

(2k - 3, k* - 4k + 3, k* - 3k + 3)
is another such triple.

These triples may also serve as the basis for yet another observation: each odd number
appears at least once as the shorter leg of a primitive obtuse Pythagorian triple. The two
formulas above exhaust all such triples for powers of odd primes; with an increase in the
number of divisors, one can observe a corresponding increase in the number of such triples.

One can also identify those primitive obtuse Pythagorian triples both of whose legs are
odd. They are of the form

2mn + m? - 3%, 2mm - m® + 3n®, m® + 3n?),

m . . . .
where 3 <n <m and, as usual, n and m are relatively prime, of different parity, and 3Im.
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m
Conversely, if n < 3 or m < n, then the primitive obtuse Pythagorian triples obtained

via the Representation Theorem have an even leg. In fact, such a leg must be a multiple of 8
as it is readily shown via equation (1). For, suppose that a is even, say a = 2x. Then b
and ¢ must both be odd, say b = 2y + 1 and ¢ = 2z + 1, and hence, from equation (1) we obtain
that 2[x? + y(y + 1) - 2(z + 1)] = x(2y + 1). This implies that x must be even. But then
the left member of this equality is a multiple of 4, since y(y + 1) and 2(z + 1) are clearly
even. Therefore x is a multiple of 4 and, hence, a is a multiple of 8.

Incidentally, these observations provided a solution to a problem posed in the
American Mathematical Monthly [7].

Furthermore, each multiple of 8 appears as the leg of a primitive obtuse Pythagorian
triple. One such triple is given by the formula

(8k, 12k - 4k - 1, 12k + 1)

where k = 1, 2, 3, ... . Again, not all such triples are given by this formula; for example,
with the help of the printout one may verify that there are six different triples with a leg
of 280. '

If the triples are not required to be primitive, one may further observe that each of
the following formulas yields obtuse Pythagorian triples for each k =1, 2, 3, ...:

(8k + 2, 24k* + 8k, 24k% + 12k + 2),
(8k + &4, 12k* + 8k, 12k? + 12k + 4),
(8k + 6, 24k? + 32k + 10, 24k + 36k + 14).

Since (6,10,14) is also such a triple, we may conclude that each positive integer except 1,
2, 4, and 8 can appear as the shorter leg of an obtuse Pythagorian triple (see [7]).

Concerning divisibility properties, we have the following two facts, which may be
established by a case-by-case examination of all possible congruences:

(i) If (a,b,c) is an obtuse Pythagorial triple, then of the four numbers, a, b, a + b, and e,
one is divisible by 3, one by 5, one by 7, and one by 8. Since (3,5,7) is one such tri-
ple, this result is the best possible.

(ii) If (a,b,e) is a primitive acute Pythagorian triple, and if a + b is even, one has
a+ b = £2 (mod 12), while if @ + b is odd, the congruences a + b = #1 (mod 12) result.
In conclusion, paralleling results of Horadam [6], we associate the generalized Fibo-
nacci sequences with the triples under consideration as follows. Let k be an arbitrary posi-
tive integer and assume that m and n satisfy the requirements set forth in the Representation
Theorem. Define H  and H, by .

.Ho = (_l)k+1(ka - Fk+ln)’ Hl = (—1)k(Fk—lm - Fkn)s
and for © > 2 let H, = H;_, + H;_,. Then it is easily shown that
H,=n and H, , =m,

and thus #, and X, ,, generate primitive obtuse and acute Pythagorian triples in the sense of
the Representation Theorem. For example, the Fibonacci numbers may be associated with the
triple (8,5,7) in the following manner:

_ 2 2 2 2
(8,5,7) = (4F,F,, 2F,F, + F> - 3F2, F2 + 3F2).
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TRIANGULAR DISPLAYS OF INTEGERS

A. M. RUSSELL
University of Melbourne, Australia

The purpose of this article is to exhibit some properties of certain binomial coeffi-
cients that are generated in Theorem 1 below. We display the integers in a triangular form
and show that their occurrence within that structure follows a regular pattern.

We make use of the kth difference AZf(x) of a function, this difference being defined by

2@ = fe+ k) - (¥)fle + k- DAL+ -+ CDFF@),
where h is a positive real number.

Although the following theorem is a special case of [1l, Theorem 2], we present an inde-
pendent proof that is more appropriate to the present context.

ST T eec

Theorem 1: Let x,, T,, ..., &3 and Yq, Yy, +++5 Ymx be two sets of real numbers such that
To <1 < oot STy Yo Y1 S eve < Ypks Xy = Ypgs =0, 1, .o, k,and y, -y, , =k,
2=1,2, ..., mk. Then
(m-1)k
k
¢b Manf@g) = 2. 0 8hF(s),
=0
where the coefficients a,, @,, ..., Q(n-1)x are positive, symmetrical [that is, a; = Cm - 1yk -1 °
27=0,1, ... (m - 1)k], and have sum equal to mk. More specifically,

Y
CrEsh) - (5OEFE™Y :

(zﬁﬁ) _ <zl<><7, —r}:w_ﬁi—l> + oo+ (-1)7 (;()(L -mg_+i<—l>’ an <1< (q+m,

where (m ~ L)k =mg + r, 0 < r <m.

< m

IA
t\

<1 < 2m

3
A

Proof: In [2, Theorem 6, p. 150] it is proved that for any positive integer n,

n-1 n-1 n-1 X .
Aj;f(x) =.Z Z E Ahf[x + (4,4 oon + ik)g]»

1, =0 1,=0 i, =0

from which we readily deduce that

m-1 m-1 m-1
MEF) = 20 Do e D Bifla 4+ (B + e+ BR].

i, =0 i,=0 iy =0
We now observe that 0, is equal to the number of ways in which p can be expressed as a
sum ¢, + *++ + 2, where 0 < 7, <m -1, ¢t =1, 2, ..., k. Consequently, ap, is equal to the
coefficient of x? in the expansion
(m-1)k
(2) :E: 0z = (L+x+x%+ - + 27 Dk = (1 -amk@ - 2)7k,
r=0
It is now clear from (2) that the a; are positive, symmetrical and have the form specified.
That their sum is m* follows by putting = 1 in the left-hand side of (2).
When k = 3, for example, we display the coefficients a; in the following triangular
array:

m
1 1
2 1 3 3 1
3 1 3 6 7 6 3 1
(3) 4 1 3 6 10 12 12 10 6 3 1
5 1 3 6 10 15 18 19 18 15 10 6 3 1
6 1 3 6 10 15 21 25 27 27 25 21 15 10 6 3 1
7 1 3 6 10 15 21 28 33 36 37 36 33 28 21 15 10 6 3 1
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We now make some observations in relation to the coefficients in (3). First, as pre-
dicted by Theorem 1, the sum of the integers in row r is equal to r®. Second, each integer
in the above table is either a multiple of 3 or leaves a remainder of +1 when divided by 3.
Furthermore, for any particular row, the first entry, namely 1, and every third successive
entry, are exactly those integers which leave remainder +1 when divided by 3. We summarize

this discussion in the following theorem.

Theorem 2: Each integer in arrangement (3) is either a multiple of 3 or leaves a remainder
of +1 on division by 3. If we label the integers in any one row as o,, 0;, ..., then

0; =1 (mod 3) when 7 = 0 (mod 3), and a; = 0 (mod 3) when © # 0 (mod 3). Consequently, in
row m, there are m coefficients which leave remainder +1 on division by 3, and 2(m - 1) which
are a multiple of 3.

Proog: The form of the coefficients o; is specified in Theorem 1. Since 3 is a prime number,
the remainders after division by 3 are completely determined by the term

(i+k—l) - (i+2) G+ 1)E +2)
k-1 2 2 :
If £ # 0 (mod 3), then 7 is of the form 3m - 1 or 3m - 2, where m is a positive integer.

In either case, it is easy to see that (4 + l{;l +2) is divisible by 3. 1If, on the other

hand, Z = 0 (mod 3), then we can write ¢ = 3m, and

E+1D)E+2) _ Gm+1)(GBm+ 2)
2 2 :
Consequently,
9m(m + 1)

-1 = 5

(Bm + 1)(3m + 2)
2

and this is easily seen to be divisible by 3.
We can generalize the results of Theorem 2 as follows:

Theosrem 3: Let k be a prime number. Then each coefficient a; of Theorem 1 is either a
multiple of k, or leaves a remainder of +1 on division by k. In any one row, o; = 1 (mod k)
when 7 Z 0 (mod k), and a; = 0 (mod k) when 7 # 0 (mod k). Consequently, in row m there are
m coefficients which leave remainder +1 on division by k, and (m - 1)(k - 1) which are a
multiple of k.

The proof is similar to that of Theorem 2, and will not be included.
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PYTHAGOREAN TRIANGLES AND MULTIPLE ANGLES

LOUISE S. GRINSTEIN
Kingsborough Community College, Brooklyn, New York

In a paper dealing with Pythagorean triangles, Gruhn [1] asked how many pairs of primi-
tive Pythagorean triangles exist in which the sine of one of the acute angles of the second
triangle equals the sine of twice either of the acute angles of the first triangle. This
question may be generalized to determining pairs of primitive Pythagorean triangles where an
acute angle of the second is N times an acute angle of the first (here N can take on any
positive integer value). In addition, it may be asked whether any relationship exists among
the generators of such primitive Pythagorean triangles.

It is necessary to review first some known results from number theory and trigonometry.
A Pythagorean triangle is a right triangle whose sides are positive 1ntegers. Such triangles
will be designated by the triple (x,y,2) which satisfies the equation x? + y = 22, In the
case where x and y are relatively prime, the triangle is said to be primitive. Formulas for
the sides of primitive Pythagorean triangles in terms of generators m and n are (see [2]):
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z=m*-n*;y=2m; z=n’

+ n?

where m and n are positive integers such that

N X Xnko

m>mn; (mmn) = 1; mn is even.

For a given primitive triangle (x,y,2), the generators may be found from:
m=vV(iz+x)/2; n=V(z-x)/2.

Some formulas for the expansion of sin N4 and cos N4 in terms of sin 4 and cos 4 are as
follows (see [3, 4]):

(1) sin N4 = sin A{(2‘cos V-1 (N 12>(2 cos V-3 + (N ;3)(2 cos A)V-5 ...}
2) = (¥ sin 4 cos¥-14 - N sind4 cos?-34 + N sin%4 cos¥-54 ...

1 3 5
(3) cos N4 = <g>cos”A - <g>sin2A cos¥~24 + (ﬁ)sin“A cosV-% ... .

The following conventions will be used throughout this paper:

6: minimum of the acute angles of the original primitive Pythagorean triangle

N: a positive integer

. Ty = (xy,yy,3y), Yy even: a primitive Pythagorean triangle where one of the acute
angles is N times one of the acute angles of the original triangle

4. my, ny: generators of Ty

5 sin 6 = min (x,/z,,y,/3,)

W N =

PRIMITIVENESS OF Ty

It is obvious that pairs of primitive Pythagorean triangles having an acute angle of
the second NV times an acute angle of the first may be obtained whemever 6 < 90°/¥ or,
equivalently, min (x,/2,,y;/3;) < sin 90°/N. 1In the following, therefore, when Ty is cited,
it is assumed that this condition is satisfied.

Theonem 1: T, primitive implies T, primitive. In order to prove this theorem, the following

lemmas are needed. { x”/zﬂ, ¥ odd

: i < i
Lemma 1 (1) If z; < y,, then sin NO Yy /2y, N even;

(ii) If x, > y,, then sin NB = y,/z,.

Proof: Use is made of formula (1) for sin N8. For x; < y,, sin 8 = x,/z;. When N is even,
every term in the bracket involves 2 cos 6. Thus, the sum and also sin N6 will be a frac-
tion with an even numerator. The value of sin NO can therefore be written as yN/zN. When N
is odd, every term in the bracket except the last term will involve 2 cos 6. The last term
has value one. Thus, the bracket will be a fraction with an odd numerator and sin N6 will
be a fraction with an odd numerator, i.e., x,/2,. For x; > y,, sin B = y1/31' Therefore,
sin N6 will be a fraction with an even numerator, i.e., yn/zN.

Lemma 2: (z,,x,) = (2,,yy) = 1.
Proof: It is equivalent to show that
(22, z, sin NG)

L}

(zz, 3y cos Ne) =1
or

(x? + y3, zysin NB) = (x? + y?, &, cos NB) = 1.

Use is made of formulas (2) and (3) for sin N8 and cos Nf. Initially, consider the case
where z, < y,, i.e., sin 6 = z,/z,:

zy sin N§ = (q)xlyy'l— (g>x§yf'3+ (§>x?yf‘5...
@2 + yHQ,,y,) +x, Q)" !
2@ ,y,) + xl(zyl)ﬂ-l’
where ¢ is some polynomial function of x, and y,. Any divisor of z, and z sin NB must
divide x,(2y,)"-'. Now (z,,x,) = (2,,y,) = 1 since, otherwise, x, and y, would have a

divisor greater than one contradicting the assumption that T, is primitive. Also (2,,2) =1
since z, is odd. Thus (zz,xl(Zyl)N’l) = 1 and this implies that (z,,zysin N§) = 1.
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Similarly,

; (5)w¥ = (B)ztgd-2e (§)etyt-e ...

z,cos N6
(xf + ¥R, ,y,) +y,(2yP 3,

where R is some polynomial function of x; and y,. The same reasoning as before shows that
(2, ,8ycos NO) = 1. The case where x, > y,, i.e., sin 8 = 91/31’ can be handled in the same
manner.

The proof of Theorem 1 can be accomplished by mathematical induction. The theorem is
trivially true for N = 1. Assume that it is true for N = k and try to show its validity
for N=k + 1. Use is made of the addition formulas:

{sin.(k + 1)6 = sin 6 cos k6 + cos 6 sin kB

(4)
cos (k + 1)86 = cos B cos kB - sin B sin k6

There are three cases to consider: (i) x; < y;, k odd; (ii1) =z, < y,, k even; (iil) =, > y,.
In the first case, by use of Lemma 1, formulas (4) become

Yeer _ Ta¥k + Y1Tx
Bra1 B8 313y

xk+1 ylyk _ xlxk
Zrs1 R1% 313y

By taking 2,,, = 2,2, and working only with the numerators, the equations become:

Yie1 = Tt + YaTx
® {
Tre1 = Yy — 1%
It must be shown that (Zy,;,Yx4+1) = 1. Now, any divisor of z, and y, divides both x,,, and
Equations (5) can be rewritten as

22Tk = Yi¥rsr ~ T1%ps

Y1

Y = TYrer T Y1Txs

Since, by Lemma 2, 2, is relatively prime to both x,,, and yz,;, any common divisor of xy,;
and y,,, must divid? Ly and.yk. Therefo?e, (@ r19Yp41) = @psyy) = 1. The reasoging in'each
of the other cases is identical, appropriate substitutions being made for the various trigono-
metric functionms.

CALCULATION OF Ty

In order to compute Ty from a given triple T,, it is first necessary to check that
min (x,/2,,y,/2,) < sin 90°/N. If this condition is satisfied, then z, = z¥. Formulas (2)
and (3) can be used to calculate zysin N6 and zycos NB. For xy take the odd number of this
pair while for y, take the even number. Table 1 lists formulas for z,sin N6, zycos NG,
2y for N =1, ..., 7 and x; < y,. Formulas, identical to these, for sides of T,, ..., Ts
were cited by Vieta in 1646 [5]. He called T,—the triangle of the double angle, T';—the
triangle of the triple angle, etc.

Examples of calculated T, values are given in Table 2. The T, examples serve further
to refute Gruhn's original conjecture that. (3,4,5) and (7,24,25) are the only pair of primi-
tive Pythagorean triangles in which the sine of one of the acute angles of the second triangle
equals the sine of twice either of the acute angles of the first triangle. It is to be noted
that both Malament [6] and Beran [7] have separately corrected Gruhn's statement.

GENERATORS OF Ty

Table 2 also lists generator values for the triangles calculated. Recursive formulas
for the generators are as follows:

Theonem 2: (i) N even:

my = max {mmn, , +my_n,, mm, = nn, }

ny = min {mny_, +my_yny, mm, - nmn,  }
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(ii) N odd and greater than one:

My = MMy_1 = ™%y
ny = Imny_y 3 mymy |
Note: Use upper sign for x, < y,, otherwise use lower sign.
TABLE 1. Typical Formulas for T,, x; < y,
Ty
3, sin NO zycos N6 2y
1 Y1 z; = (x} +yDH?
221y, yi - o 23
32,57 - ) yi - 3=ziy, EH
4xyyi - 4xiy, yy - 6xiy] + ) 2
5x,y7 - 10x3y? + x3 y; - 10z3y? + 5xly, 23
6 y; - 20xiy] + bxiy, yi - 1saly) + 15ziy} - «f =
Teyy§ - 35aiy) + 2leyyl - @) y] - 21xly; + 35ziy] - 7=y, 2]

TABLE

2.

Some Examples of Ty

Ty
Example T, T, T, T, T,
A x: 5 119 2035 - -
y: 12 120 828
z: 13 169 2197
m: 3 12 46
n: 2 5 9
B x: 7 527 11753 354144 9653287
y: 24 336 10296 164833 1476984
z: 25 625 15625 390625 9765625
m: 4 24 117 527 3116
n: 3 7 44 336 237
c x: 35 1081 27755 462961
y: 12 840 42372 1816080 -
2 37 1396 50653 1874161
m: 6 35 198 1081
n: 1 12 107 840
D x: 3 7
K 4 24 - - -
2 5 25
m: 2 4
n: 1 3
E x: 15 161 495
y: 8 240 4888 - -
2: 17 289 4913
m: 4 15 52
n: 1 8 47
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Proof of Theorem 2: 1Initially, consider the case where N is odd and z, < y,. The remaining

cases are proved in a similar manner. Using the addition formulas (4) for sin N6 and cos NO
and Lemma 1, the following values are obtained for the sides of T, in terms of the generators
of Ty and T _;:

2
1

- o2 2 _ .2 2 PR
Zy = 4m My-1"1 = My My + 7y

2
yo1M My T my_ym

-1
2 2 2
yy = 2lmn (my_; - ny_1) - mN-lnﬂ-l(m§ - nl

2 2 2 2 2 2 2 2
By =my_my tmy_ny oy _my oy ny

Consequently:

my =Y (ZN + IL‘N)/Z =mmMmy_q + nminy.1
ny =V (2y = xy)/2 =mny = mymy

It is also to be noted that the sides of T, serve as generators for T,, where these
exist. Thus, for instance, for T; = (5,12,13), the sides 5 and 12 serve as generators for
7, = (119,120,169). Similarly, for T, = (1081,840,1369), the sides serve as generators for
T, = (462961,1816080,1874161).
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PROOF THAT THE AREA OF A PYTHAGOREAN TRIANGLE IS NEVER A SQUARE

CURTIS R. VOGEL
winnett, Montana

Prove that the area of an integral-sided (Pythagorean) triangle is never a square
integer. In the diagrams provided below, the two triangles are equivalent. Thus, a = a,
b=n, and ¢ = (n + k), where a, b, n, and k¥ as well as g are integers. A4 = the area of the
triangles.

e b = 2g%a e= (n+ k) b=mn
in
a a
A= %{ZBza)a = g2g%, which is a square a® + b? = o?
a® + b? = o? a® + n* = (n+ k)2; a® = 2kn + K?
a’ + (28%a)? = o* | @kn + K2) + n* = (n + k)2
a® + 4a"a? = o

43



a? + b? ¢? (Pythagorean Theorem)

a? +n? n + k)2 (Pythagorean Theorem and equivalence of above diagrams)
a? = 2kn + k2

b = 2e%a (from above diagrams)
b? =n® = 45" (a®) (since b = #n and b = 25%a)
n® = 48" (2kn + k%) (since a® = 2kn + k?)
n? = 8ks'n + 4k2s"
n? - 8ks'n - 4k%s* = 0

8ks" * V64k2s® - 4(-4k%s")

n = 2

, o Bks' * /6uk?s® + 16k%s"
2

L - Bks" + /16K?s" (45" + 1)
2

n o Bke' t 4ks®Vis" + 1

2
n = 4ks" + 2ks®V4s* + 1

From the above, we obtain a? = 2kn + k%, b? = nz, e? = (n + k)2,

If n is irrational for all integral values of a, b, ¢, n, and k, then a?, b?, and c?
cannot all be squares. If az, bz, and ¢? are not squares, then a, b, and ¢ are not integers,
and the triangle is not an integral-sided, or Pythagorean, triangle. 7 can be an integer
only if v4s* + 1 is an integer, and v4s* + 1 is an integer only if s* = 0—that is to say,
if 8 = 0. From the diagrams, you can see that when s = 0, b = 0, and since the area of a
triangle = %ab, this triangle has an area of 0.

Thus, dismissing the case when the area of the triangle is 0, the area of an integral-
sided right triangle is never a square number.

This proof centers around the assumption that for integers a, n, and k, a
(n + k)?. TFor example, when g = 3, n = 4, and k = 1, 32 + 42 = (4 + 12,

The following result—obtained by using a similar approach against Fermat's Last Theorem,
where " + y” # 2" for integers when n > 2—is presented for the interest of the reader.

Forn =23, a’ +n’= (& + k). Thus,

a® = 3kn?® + 3k*n + k3

Z4n?=

3kn? + 3kZn + kP - a® =0

C -3k 9k - 4GR (R - )
n =
6
_ -3k% £ V/1248%k - 3k"
n= 6k

I am not sure whether or not this result is of any use, or if it can be generalized for powers
greater than the third power, but I intend to pursue this line of reasoning.

L
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RECONSIDERING A PROBLEM OF M. WARD

. JAN VAN LEEUWEN
University of Utrecht, Utrecht, Netherlands

ABSTRACT

In a recent issue of The Fibonacci Quarterly, Laxton proved a conjecture of Ward to the
effect that integral linear recurrences which are not degenerate in a certain sense neces-
sarily contain infinitely many distinct prime divisors. We point out that the result is an
immediate corollary to an early theorem of Pélya published in 1921, and derive Ward's con-
jecture for a more general class of integral linear recurrences.

1. INTRODUCTION

Ward [6, 7] showed that nondegenerate integral linear recurrences of order 2 and 3
always contain infinitely many distinct prime divisors. Recently, Laxton [3] proved Ward's
conjecture that a similar result must hold for recurrences of arbitrary higher order
(again excluding some degenerated cases).

Let

w + ot agw,,, +agw,

n+m=am-1wn+m-1 n+1l

(with a, # 0, m>0, n >0) be an mth order integral linear recurrence and let
P,(x) = x" - q

m~-1 -
m - 1% a,

be the associated characteristic (or spectral) polynomial.
Here is what was proved.

Theorem: Let {w,} be an integral linear recurrence of order m > 1. If all roots of B, (x)

" are distinct and if no ratio of distinct roots is a root of unity, then {w,} has infinitely

many distinct prime divisors.

It turns out that the answer already did exist before the question. The very same
result (and thereby the solution to Ward's conjecture) is an almost immediate corollary to
a theorem of Pélya [5, Satz II'] dating back to 1921, which seems to have escaped attention.

We shall indicate how the theorem can be applied and use it to derive a stronger solu-
tion of Ward's problem.

2. POLYA'S THEOREM

We shall have to assume that the reader is familiar with some algebraic number theory
(see Landau [2] or Pollard [4] for an excellent introduction).
First we observe

Lemma: Let K be an algebraic number field, D a nonzero algebraic integer in X, and {w,} a
sequence of rational integers. {w,} has infinitely many prime divisors if and only if {Dw,}
has infinitely many prime-ideal divisors.

We now combine Pélya's Satz III' [5, p. 15] and Satz II' [5, p. 17] to obtain

Theorem: Let Qs +.+ Op and all coefficients of the nontrivial polynomials
P,(x), ..., P.(x) be algebraic integers. Let D # 0 be an algebraic integer such that
F(x) = l-(P (x)af + -++ + P, (x)ak)
D\'1 1 r r

has rational integer values for x 0, 1, 2,

Assume that » + min deg P (x) < 2. If no ratio of distinct a's is a root of unity, then
F(x) has infinitely many prime-divisors.

P6lya showed the theorem for D = 1 (or any rational integer for that matter) but only
slight modifications in the proof make it true for arbitrary algebraic integers.

For consider G(x) = D + F(x) and carry out the same proof. By the lemma, it follows
that assuming that F(x) only has finitely many prime-divisors (by way of contradiction, as
P6lya does) is equivalent to assuming that G(x) only has finitely many prime-ideal divisors.
Where P6lya considers absolute values, one should use norms; where Pélya proceeds with
analytic arguments related to the series LF(n)z", one can do exactly the same for G after
factoring out D.

The theorem enables us to prove Ward's conjecture with the condition that all roots need
to be distinct omitted!

Here is what we get.
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Theorem: Let {w,} be an integral linear recurrence of order m > 2. If no ratio of distinct
roots of P,(x) is a root of unity, then {w,} has infinitely many distinct prime divisors.

Here is how to prove it. Consider the recurrence .equation for w,. Following Gel'fond
[1] (or other books on difference equations), the general solution can be expressed as

w, = %(Pl(x)af + «++ + P, (x)aZ)

where &;, ..., @, are the roots of P,(x), P;(x) a polynomial of degree equal to the multi-
plicity of w; minus 1 and with algebraic integer coefficients, and D a nonzero determinant
of algebraic integers (hence an algebraic integer as well). It easily follows that the con-
ditions for Pélya's theorem are satisfied and {w,} must have infinitely many distinct prime
divisors.
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WHAT A DIFFERENCE A DIFFERENCE MAKES!
JERRY T. SULLIVAN

Two men are leaving the office when one remarks that both his wife and boy are cele-
brating their birthdays that night. The other wonders if it is his youngest son. 'Yes,"
says the first, "but he's not so little anymore. His age, multiplied by my wife's age, is
equal to the square of the difference of their ages plus one year." This problem, similar
to an earlier one in The Fibonaceci Quarterly [1], provides some surprising and amusing
mathematical twists.

On the premise that many mothers are between 25 and 35 years of age, and also that a
typical boy is about 10 years old, pairs of ages such as 10 and 30, 11 and 35, etc., can be
tested. After a few trials, an answer is seen to be 13 and 34. Further thought shows that
the problem can be handled algebraically. If the age of the wife is W and that of the boy
is B, then

(1) WB = (W-B)? + 1.
The wife's age can be solved as a function of the boy's age:
(2) W= [3B % (5B® - 4)*]/2.

Substituting B = 13 into equation (2) and using the positive square root gives the known
answer W = 34. However, using the negative square root gives the answer W = 5. It is an

unusual wife who is younger than her son, but the numbers 13 and 5 also satisfy equation (1).

Using the number 5 in equation (2) and choosing the negative root gives the numbers 5 and 2
as another solution. Proceeding in this fashion results in the sequence

(3) 1, 2, 5, 13, 34, 89, ...,

where each successive pair of numbers satisfies equation (1). The number 1 has the unusual

property of giving the solutions 1 and 2 when substituted into equation (2). It does not give

a solution lower than itself.

The above sequence is every other number of the usual Fibonaccl sequence. Calling the
initial age in the sequence A, the next 4,, etc., equation (1) may be rewritten as a
difference equation,

(4) Ayarfy = Uyyy - A% + 1
46
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Equation (4) is a nonlinear difference euqtion, which fortunately can be simplified. First

rewrite equation (4) as
2 2 _
Ayoy = 34y Ay + 4y = -1,

This must also hold for the next number pair so that
2
Aysz = 3An424

Cancelling like terms and rearranging gives
(Apsp = Ayl (Ayyo = 34541 + 4y) = 0.

Setting the term in brackets equal to O would result in a repeating solution to equation (4),
which would not generate the correct age sequence. The correct simplification of equation
(4) is the linear difference equation

(5) Ayyo = 3Ay4 + Ay = 0.
Equation (5) is solved by assuming that Ay = RY, Substitution results in
RYR?* - 3R + 1) = 0.

2 _ g2 2
N1 T Aysr = Ayar - Ay 4y + 4y

There are two roots which satisfy the quadratic equation,
R, = (3+V5)/2 and R_ = 1/R,.
The solution to the difference equation (5) is
Ay = ar" + bRV,
and choosing the constants g and b so that A; = 1 and A; = 2 finally results in
(6) 4, = (B/R + DRV + (1/R + 1)R7",

The curious property that 4, = 1 seemed to be a natural boundary for the problem, and
is mirrored in the solution. Suppose there were lower solutions A_,, A_,, etc. Replacing
N by -N in equation (6) leads to

_ R -N ( 1 N ( R N-1 ( 1 -(N-1) _
A‘”_(R+1>R +R+1>R'R+1>R +R+1>R =4y_1

so that all of the supposed lower solutions are actually equal to a higher ome. Lastly, to
actually compute 4y from equation (6) is not as formidable as it first appears. It is not
necessary to compute large integer powers of R = (3 + V/5)/2, but merely to use the rules

R? =3r -1
R* = R(R*) =3R* -R=8R -3
R* = R(R®) = 8R* - R = 21R - 8
etc.
REFERENCE
1. J. A. H. Hunter. '"Fibonacci to the Rescue." The Fibonacei Quarterly 8, No. 4 (1970):
406.
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CIRCULANTS AND HORADAM'S SEQUENCES
JEROME MINKUS

900

Berkeley, California (
In a certain problem in knot theory it became necessary to evaluate the following n x n (
determinant: (
-(2k+1) k 0 0 0 ¢
k -(2k+1) «k 0o .
0 0 k -(2k+1) k& . 0
1) ¢, (k,-(2k +1),k) = ..
0 k -(2k+1) k
x 0 %k -(2k +1)
-2k +1) k 0 0 O k
where k is an integer. The purpose of this note is to express this determinant (and other
determinants of the same form) in terms of Horadam's generalized sequences (see [5]).
C,(k,-(2k +1),%) belongs to the class of determinants known as "circulants." A deter-

minant is a circulant if each row is a cyclic permutation of the
row of an n x n circulant is (a,, a,, ..., a,_;) then the second
«e.s Q,_3), the third (a,_,, an-1, Qys --+5 ay_3) and so on. If
denote the value of the #n x n circulant with first row (a,, a;,

preceding row. If the first

row will be (a,_;, ag, a;,

we let C(ao, Ayy eeey a"_l)
., Qp-1) then the following

pretty result holds (see Aitken [1, p. 123] or Muir [8, p. 445]):

Theonem 1: Let w = exp (2nZ/n). Then
n-1 . A X
(2) Clags ays «vor ay_y) = Il (@ + @07 + a,w? + <+ + g, j0®@"Dd),
i=0

For the particular case in which we are interested, all but 3 consecutive terms in each
row of the determinant vanish. In agreement with (1), we will let C,(ao, a;, a;) denote the {

value of the n x n circulant whose first row is (a,, a,, a,, 0, ., 0). Equation (2) then
reduces to

n-1 . .
(3) Cnlags ap, a,) = ‘HO (@, + a;w? + a,w?d).

j=

Here g, a,, and g, may be any real or complex numbers. We will assume throughout that
ap, # 0. It is also reasonable to assume that n > 3. It is clear that (up to sign)
Cnlay, ays a,) is equal to C(0, .5 0, ay, a;, a,, 0, ., 0); i.e., it doesn't really
matter where the 3 consecutive terms appear in the first row of the circulant.

As a consequence of Theorem 1 we get:

Conofhary 2: Llet x,, x, be the roots of the quadratic equation
2 -
(4) ax? +ax+a, =0 (a, #0).
Then
(5) Culays ays a,) = ap(e] = 1) (xf - 1).
Proof: From (4) it follows that
(6) z, +z, = -a,/a, and x,x, = a,/a,.
Again let yu = exp (2mi/n). Then
n-1 . X n-1 . 24
aj(x] = Dxy - 1) =aj [1&, - w)(x, - w) =af [](x,z, - (=, + z)w? + w??)
i=0 i=0

1 n-1
‘ . ) 2i
(a, +a,w’ +a,w?) = [] (a, +a,w’ +a,w??)
i=0

n-1 ) X n-
ag [1 (ay/a, + (ay/aw +w?) = T1

Jg=0 Jj=0

and the desired result then follows from (3).
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Corollary 2 will suffice for our purposes. However, it should be noted that for an
arbitrary circulant with first row (a,, Ays oves an_l) an analogous result holds relating
C(ays -++» Qn-1) and N(z} - 1) where x,, ,, ..., X,-, are the roots of a,x"~! + g,z"- %2 +
... +a = 0 (compare Muir [8, p. 471]).

n-1

Following Horadam [5] for any integers p,q we define the sequences u, = u,(p,q) and

v, Z v,(p,q) (for n > 0) recursively by

(7) ug =1, u; =p, U, =pun_1 - qup-2 (1 22)

and

(8) UO = 2; U]_ =Pp Uy = PVn-1 ~ QVn-2 (n—>-2)

In particular . .

9) u,_,(1,-1) = F, (forn > 1)

and

(10) v,01,-1) = L, n > 2)

where {F,} is the ordinary Fibonacci sequence starting with F, = F, = 1 and
(11) Ly=Fuy; +tFpey (n2>2)

is the associated Lucas sequence.

The following can be verfied easily (see Horadam [5] and Bachmann [6, Chap. 2, pp. 73-78]):

Lemma 3: Let a,B be the roots of

(12) z? - pr+qg=20

and let d = +/p® - 4q. Then for all n > 0

(13) an*tl - 8" = du (p,q)
and

(14) a” + B = v,(p,q).

Equations (13) and (14) remain true even in the 'degenerate" case d = 0 (i.e., p2 = 4q
and g = B), but then (13) is no longer useful for determining u,(p,q). Note further that
although p,q are assumed to be rational integers, the recursion formulas (7) and (8) make
equally good sense if we allow p and g to take real or complex values. Equations (13) and
(14) (and most of the results stated below) remain valid in this more general setting.
However, in this note we will restrict ourselves to integer Horadam sequences (and to
circulants with integer entries).

Combining Corollary 2 and Lemma 3 gives:

Theonem 4: For any integers a, b, and ¢ (a # 0),

(15) Cp(a,bye) = a™ + ¢ - v,(-b,ac) (n > 3).
Proof: From equation (5), we get

(16) Cnlasb,e) = an(x] - D(xj - 1)
where x,,x, are the roots of

a7 ax? + bx + ¢ = 0.
Multiplying (17) by g and letting z = ar, we get

(18) 22 4+ bz + ac = 0.

The roots of (18) are z, = ar, and 2z, = axr,. Therefore,

(19) gz, +z2,=-b and z,z, = ac.

If we let p = -b and g = ac in Lemma 3, then equation (14) becomes
(147) 2] + 27 = v,(-b,ac).

Now plug x, = z,/a (¢ = 1,2) into (16) and use (14') and (19) to get

C,(a,b,e)

a"((z,/a)" - 1)((z,/a)" - 1)

n n + n
) an<(2122) PG 22)>

a2n Q"

e + a” - v,(-b,ac), which is equation (15) above.
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Thus we can use properties of C,(a,b,c) to give us information about v,(-b,ac) and
vice versa. For example:

Corofdary 5: For any integers r, a, b, and ¢ (a # 0,

(20) v, (~rb,r’ac) = r"v,(-k,ac).
Proof: Equation (15) implies that
(21) Cp(ra,rb,rc) = rn(a™ + en) - v, (-rb,r%ac).

But C,(ra,rb,rc) is an n x n determinant. Therefore,
(22) Cn(ra,rb,re) = r"C,(a,b,e) = rr(a™ + ¢™ - v, (-b,ac))

and (20) follows.
Equation (20) can also be proved directly [i.e., without introducing C, (ra,rb,rc)]
by comparing (a” + B") with (af + Bj) where a,B (resp. ogy,B,) are the roots of

z2 + rbx + r?ac = 0 (resp. x2 + bx + ac = 0).
When ¢ = a [as is the case in (1) above], then we can express C,(c¢,b,c) in terms of
Horadam sequences which are different from the sequence {v,(-b,c?)} given by Theorem 4.

Theconem 6: Let b,c be integers ¢ # 0. Let r = —(b + 2¢) and suppose r # 0. Let
u, = u,(r,-re) and v, = v, (r,-re). Then for each m > 2,

(23) Cpm_1(esbye) = =(vy, )% /¥ 71
and '
(24) C,, (e b,e) = =% - 4¢?) (u,y, )2 /r*".

The proof of Theorem 6 depends on:

Lemma 7: Let r = —(b + 2¢). Then,

(25) (Vg1 s=re))? = v, (-rb,(e)?) - 2(re)™" "}
and
(26) B - 4e?)(u,, _, (@,~re))? = v,, (-rb, (rc)?) - 2(rc)?".

Proog of Lemma 7: We will prove (26) by using (13) and (14). The proof of (25) is almost
exactly the same and will be left as an exercise.
Let o,BR be the roots of x2 -~ rx - re¢ = 0. Then,

(27) aB = -rc.

r + /r® + 4re r - Vr? + bre

Choose ¢ = =———————— and R = ————— . Note that d? = »2 + 4ye = b? - 4e?, since

2 2
r = -(b + 2¢). Using this fact, it is easily verified that
(28) ) a? = ra, and B%? = rB,,
- /2 _ 4.2 b _ /P2 _ 4,2
where o, = b+ k; 4" and Bo = b ké " ire the roots of x? + bz + ¢ = 0.

Now applying Lemma 3 (first with respect to 0,8 and then with respect to 0,,B,), we get

(B% = 4e?) (uyy, _(r,-re))? = (2% + bre) (u,, ,(r,-re))?
= (dugy_1(r,-re))? = (a7 - B*7)°
= ()2 + (BY)2" - 2(aB)2"
= 2" (2" + B2") - 2(-re)?™  [using (27) and (28)]
= r’"p, (~b,c?) - 2(re)?"
= v, (-rb,(re)?) - 2(re)?"  [using (20)].
Proot of Theorem 6:

rir-1c, (e,b,e) = Cy,_,(re,rb,rc)
= 2(re)?" "t ~ v, _(-rb,(re)?) [using (15)1]
= ~(vy, -, (r,-re))? [using (25)].

This proves (23). Equation (24) follows in the same way from (26).
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When Irl = g2, equations (23) and (24) can be rewritten in the following simpler form:

Conollany &: 1If (b + 2¢2) = +s?, then for all m > 2,

(29) Com -1 (23b5e) = £(vy, 1 (s,2e))?

and

(30) C,, (e b,e) = 7(b = 2¢)(uy, ,(s,%c))?.

Proch: The proof of (30) depends on the fact that for any integers r, p, and g
(31) u, (rp,r*q) = r™u,(r,q).

This is analogous to (20) and is easily seen by comparing (a"*! - g"*1)/d and
(ap*? - Bg”)/do where o,B (resp. 04,B,) are the roots and d (resp. d, = d/r) is the dis-
criminant of x? - rpx + r?g = 0 (resp. 22 - px + g = 0).

Now if » = =(b + 2¢) = 3¢2, then it follows from (24) and (31) that

Com(cibye) = =(B% = 4e?) (uUy, _, (78%,28%¢)) 2/ (8%) 77

(32) 2 2
-(b% - 4
( 52 )(u

since -(b? - 4¢?) = r(b - 2¢) = 38?(b - 2¢). It also follows from (31) that for any p,q
u,(-p>,q) = u,((-Lp,(-1)%q) = (-1)"u,(p,q).

a1 (F8,%0))% = 3 (b - 20) (u,, _, Gs,%e))?,

Therefore,

(MZM-I("S’ic))Z (“2m-1(+3,ic))2

and it doesn't matter which sign we choose for s on the right side of (32). This proves
(30). The proof of (29) is essentially the same.

Note that if we allow p and g to take on real or complex values in the recursion for-
mulas (7) and (8) defining u,(p,q) and v,(p,q) then the above argument shows that (23) and
(24) can always be simplified to

(29" Com_1 (esbye) = =(v,, _, /r,-e))?
(301 Conlc,bye) = (b = 20)(u,, (/r,-e))*
where r = -(b + 2¢).

If in Corollary 8 we let b + 2¢ = pz and ¢ = g, then (29) and (30) can be rewritten as

(33) Com-1 GP% - 2q,9) = (vy, 1 (@,0))?

and
(34) sz(q’pz - Zq’q) = _(pZ - 4Q)(u2m_1(p,(]))2-
The cases b + 2¢ = #1 are of particular interest.
If p + 2¢ = +1 and we let ¢ = k + 1, then (29) and (30) become
(35) Com_ 1 (K+1,-(2k +1) ,k +1) = (v,,_,(1,k+1))?
and
(36) Cop(k+1,-Q2k +1),k +1) = (4k +3)(u,, ,(L,k+1))%.
If p + 2¢ = -1 and ¢ = k, then we get
(3;) Cpm g (ko= (2K +1) k) = =(vy, _, (1,-K))*
an
(38) €, (ko= 2k +1),k) = =(4k +1) (uy, _; (1,-K)) 2.
For k = 1, equations (37) and (38) reduce to
(377 Com-1(1,-3,1) = -L%, _,
and
(38") C,,(1,-3,1) = -5F; .

(Compare Fielder [2, p. 356].) The determinant dealt with in Fielder's paper is an example
of a "continuant'"—another important class of determinants (see Muir [8, Chap. XIII]).

The circulants ¢, (k,-(2k +1),k) and C,(k +1,-(2k +1),k +1) arose in the following topc-
logical problem: To each pair of odd integers a,b satisfying a > 3, |b| < a, (a,b) = 1,
there can be associated a "knot with two bridges' (see Schubert [10]). Let M(n,a,b) denote
the n sheeted branched cyclic covering the two-bridge knot associated with the pair {a, r1.
Then it can be shown (Minkus [7]) that the one-dimensional integral homology group of
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M(n, 4k + 1, 4k - 1) is an abelian group on n generators 4,, A,, ..., A, subject to the n
defining relations k4; - (2k + 1)A;,., + Kd;4, =0 (£ =1, 2, ..., n), subscripts reduced

mod » when necessary. Similarly, the homology group of M(n, 4k + 3, 4k + 1) has defining
relations (k + 1)4; - (2k + )A;4, + (K + 1)434, =0 (£ =1, 2, ..., n). Thus,

Co(k, =(2k + 1), k) and C,(k + 1, -(2k + 1), k + 1) are the determinants of the "relation
matrices" of these groups. When these circulants are nonzero, they are (in absolute value)
equal to the orders of these groups (compare Fox [3, p. 149]). Note that C,(k + 1, -2k + 1),
k + 1) and -C,(k, -(2k + 1), k) are perfect squares for odd values of n, in agreement with

the theorem of Plans [9]. 1In the case k = 1 [equations (37') and (38') above], the two-bridge
knot of type {5, 3} is just the figure-eight knot. The homology groups of the branched cyclic
coverings of this knot have been determined by Fox and agree with (37') and (38') (see [4,

p. 1931). '
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AN EXPANSION OF GOLUBEV'S 11 x 11 MAGIC SQUARE OF PRIMES
TO ITS MAXIMUM, 21 x 21

LOREN L. DICKERSON
Huntsville, Alabama

Edgar Karst, in the December 1972 issue of The Fibonacei Quarterly presented Golubev's
magic square of order 11 consisting of prime numbers of the form 30x + 17 and asked whether
someone is able to attach a frame of order 13. The characteristics in Golubev's square are
additionally '"magic" in several ways which are repeated from the article cited. The stated
requirements imposed were that:

1. All n rows, n columns, and 2 major diagonals have the same sum equal to n x the central
number (n x 63317 in Golubev's square).

2. All included numbers be prime numbers equal to 17 plus an integral multiple of 30, with
the multiple not divisible integrally by 17.

3. The sums of each pair of opposite (top and bottom or left and right) borders, excepting
corner numbers, equal 2 x (the order less 2) x the central number [here 2 x 7 x 63317
or 2 x (n - 2) x 63317].

4. The sums of opposite outer elements in any row or column equal 2 x the central number,
for any order.

5. The opposite corner primes in the squares of each order have the sum 2 x the central
prime (2 x 63317).

The addition of frames of the order 13 through 21 was as far as I could go with posi-
tive primes of form 30x + 17 centered about 63317, following the rules imposed above. There
were about 46 unused primes left over in the series. This is of course not enough for
another (23rd-order) frame, but the availability of more primes in the progression suggests
the possibility of rearrangements of complementary pairs and that an additional degree of
magicality might be accomplished in the 21 x 21 square.
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The 21 x 21 square is shown in Figures la, 1b, and lc, which are to be considered as the
left, middle, and right thirds of the square, respectively.

87587
87887
37397
92297
34127
99527
23567
103217
22637
106907
19577
109517
16787
112247
2957
114827
11087
119027
6047
121487
947

27617
90527
35507
32327
57077
52457
54767
67217
75437
55967
69737
57737
56957
60167
71867
74177
69557
94307
91127
36107
99017

38867 91757
64037 62417
79337 79817
37217 83177
91367 43427
33767 88667
97607 37547
27767 94397
103307 31907
23057 100787
121157 24677
18047 106487
112577 19997
13877 111977
116867 2897
9467 117497
120647 8837
5717 122867
124847 1427
2357 64217
87767 34877
FIGURE la.
102677 23627
35747 96137
96587 29837
34667 98327
67427 56807
74567 51287
71987 54167
60527 60257
64877 60497
60017 64577
72707 62477
58067 62897
60917 66137
66107 66377
54647 72467
52067 75347
59207 69827
91967 28307
30047 96797
90887 30497
23957 103007
FIGURE 1b.

34457
18257
45587
78797
79427
46877
84737
41777
89867
36527
94907
31607
99707
25367
106277
20327
111347
2207
81047
108377
92177

95087
48947
85577
47777
63647
64667
49367
80747
17957
92987
33587
104327
22037
112877
13217
120977
46727
78857
41057
77687
31547

30137
84377
40787
85247
62627
73547
80177
80897
81077
81647
44927
44417
43787
84437
27917
53657
64007
41387
85847
42257
96497

Left-Hand Third of Square

49937
30467
43037
27827
70157
75767
72647
58427
54347
61637
63317
64997
72287
68207
53987
50867
56477
98807
83597
96167

76697

19697
102317
24197
104987
49157
49787
53597
59387
71147
63737
64157
62057
55487
67247
73037
76847
77477
21647
102437
24317
106937

110567
24137
107837
21467
75227
49727
50147
70937
65717
66617
53927
68567
61757
55697
76487
76907
51407
105167
18797
102497
16067

Middle Third of Square

98897
41687
91097
41117
65147
52757
59447
73127
53117
52727
74507
51257
101537
46187
57947
73877
61487
85517
35537
84947
27737

14537
107687
18287
111497
49877
24527
84407
66467
51197
70667
56897
68897
69677
59417
42227
102107
76757
15137
108347
18947
112097



116027 10457 119057 7187 122117 3677 125687
18917 113147 13457 118757 7727 124277 38747
114197 12227 119657 6947 125207 47297 89237
14867 118037 8387 124427 43457 89417 34337

77867 48197 79907 47207 83207 35267 92507
119087 72977 61967 79757 37967 92867 27107
68687 46457 77267 41897 89087 29027 103067
53507 45737 45887 84857 32237 98867 23417
73517 45557 108677 36767 94727 23327 103997
73907 44987 33647 90107 25847 103577 19727
52127 81707 93047 31727 101957 5477 107057
75377 82217 22307 95027 20147 108587 17117
25097 82847 104597 26927 106637 14057 109847
80447 42197 13757 101267 14657 112757 14387

67187 98717 113417 20357 123737 9767 123677
7547 53087 5657 106307 9137 117167 11807
48767 78437 62987 15287 117797 5987 115547
111767 8597 118247 47837 3767 120917 7607
12437 114407 6977 119687 46817 1787 120587
107717 13487 113177 7877 118907 62597 5147
10607 116177 7577 119447 4517 122957 39047

FIGURE lc. Right-Hand Third of Square
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SOME EXTENSIONS OF PROPERTIES OF THE SEQUENCE OF FIBONACCI POLYNOMIALS

JOHN R. HOWELL
Hill Junior College, Hillsboro, Texas

Sequences of functiomns, (g,), that satisfy the recursion formula
(1) Gper @) = azg, ., (x) + bg, (x)

where @ and b are constants, inherit many of the properties of the sequence of Fibonacci poly-
nomials [1]. This paper is intended to present some of these extensionms.

1. BASIC DEFINITIONS AND PROPERTIES

Suppose that a and b are numbers. Let R denote the set of real numbers and C denote the
set of complex numbers.

Deginition 1: If VCR, Se,p (V) = {{g,>|. For each natural number p,g,:V - C and
gp+2(x) = axgp+1(x) + bg, (x) for each x e V}.

, € V,, it is easy to verify that if <{g,> € 8 1)(V,), the corresponding sequence of
restrlctions is an element of §(4 ) (V,).

Theorem 1: 1If (g,> and <hn) are members of 8¢ ;) (V) and s:V > C and t:V + C, then
{8g, * thnd> € 8(4,1)(V). The proof for Theorem 1 is a straightforward computation.

Theorem 2: 1If {<g,>, <hnd} C Sa,m(V), then (g,> = <hn> if and only if g, = h, and g, = h,.
The proof of one of the implications of Theorem 2 is an application of the definition of
equality of sequences. The other implication is an easy induction proof.
The elements of S, ,(V) share a common summation formula.

Theorem 3: Suppose that for each natural number p, gpiV > C. {gnY € S(a,»(V) if and only if
for each natural number p,

D
(e +b - 1) g, &) = g,,, @ +bg, (@ + (& - Vg, () - g,).
j=1

Proof: 1If {gn> € S(q,»(V), the summation formula can be proved by a simple inductive argu-
ment. If {(g,)> is a sequence of complex-valued functions on V with the given summation for-
mula, then for each natural number p, the identity

p+1 P
(ax + b - 1)gp+1(x) = (ax+ b - l)[Zgj (x) - Zgj (x)]

Jj=1 i=1
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can be transformed into the equation axgp+1(x) = gp+2(x) - bgp(x) and thus
{gn> € Sa,py(V).

One element of §(; 3)(R) seems to correspond to the sequence of Fibonacci polynomials.
Deginition 2: Let Wa,py = <wn)> be the element of Q(aJn(R) defined by w,(x) = 1 and
w, () = ax.

W(a,p) 1s well defined as a consequence of Theorem 2. W(,1), for example, is the
sequence of Fibonacci polynomials. If ¢ # 0 and b # 0, M. N. S. Swamy's formula [2] for the
Fibonacci polynomials can be modified to give the following formula:

e . N
wp(x) = Z (p j o)(ax)p - JbJ'
i=0
The importance of Wa,py 1s illustrated by the following theorem, which can easily be proved
by induction. :

Theonem 4: Suppose V C F and that {(g,) is a sequence of complex-valued functioms on V.
<G> € Sa.p,(V) if and only if Gp+2 = bg W, + g,wp 4 for each natural number p.
2. THE BINET FORMS FOR chb)

2,2 2 2
Definition 3: Let A(z) = &L a2x + 4D d B(z) =ax‘”12x + 4b

Theonem 5: <1, A, A%, A*, ...> and <1, B, B?, B%, ...)> are elements of G, 4 (R).
Proof: A%(x) = axA(x) + b and B*(x) = axB(zx) + b. Using these two facts,
AP U z) = 4% (2)AP(x) = axd(z)AP(x) + bAP(x) = axdAPi(z) + AP (x)

]

and

BP*%z) = B*(z)BP(z) = axB(z)BP(x) + bBP(x) = axBP*Xz) + bBP(x).

]

Theohem 6: For each natural number p, (4 - Bwp = AP - B®.

Proof: For each natural number ps let hp = (4 - B)mp and gp = AP - BP. As a consequence of
Theorem 1 and Theorem 5, ®

{<hn> * <gn>} c g(a,b)'
By direct computation, h, = g, and h, = g,. By Theorem 2, {g,> = <{h,> and the result
follows by equating corresponding terms.

3. MATRIX GENERATORS

Let @ = (Zx é)

Theonem 7: 1If {g,” € Q(ifzy then for each natural number p,

<9p+2 gp+1> - g3 92>Qp-1
gp+1 gp g2 gl

Theorem 7 can be proved with a simple induction argument. Using Theorem 7, many iden-
tities analogous to familiar identities for the sequence of Fibonacci polynomials can be shown
by standard methods. For example, the following statement is a result of computing the deter-
minants of the matrices in Theorem 7.

Conollany: If e 8 M and p is a natural number,
Lorokcarny In (a,b) I
-1
Gpasbp = Gpe1 = D g g, - gD
For the sequence W ;), the identity in the corollary above reduces to
Wy 4oWp — Wiy = -(-b)F.

If Theorem 7 is specialized to W, py and the result simplified, the following corollary
results. ’

Conollary: TFor each natural number p, )
1 0 wp+z Wp +1 _ Qp+1
0 b w w *
p+l p
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Theorem §: 1If p and g are natural numbers, W,,o,; = Wp+1 * Wg+1 + Dwp * wq.

Proof: When QP*" is computed directly using the corollary above, Wp4q+1 1s the first row,
first column entry. When QF and @9 are computed using the corollary above, and the results
multiplied, the first row, first column entry of QP « Q9 is Wp41 * Wg+1 t bwp + wg.

X InXplo

Conoflany: 1If m, n, and j are natural numbers and n > j, then

Upap+1 = Unyjailn-j+1+ Dy 45wy e

This corollary can be proved by simply letting p =m + J and q = n - j in Theorem 8.
Theorem 8 may be used to prove another generalization of itself.

e T

Conollarny: 1I1f {u, v, p} is a set of natural numbers,
2
Uy 4+pWy +p ~ (-b) ww, = Wy gy +p*

Phooﬁ: The proof is by induction on p. If p = 1, the corollary reduces to Theorem 8.
Suppose that k is a natural number such that w, W, 4+x - (=D w,w, = W W), 4y 4 ke

Wy +k+1Wo +k+1 ~ D)y rwuw, = Wy +v+2k 41 = PV 13 Wy 41) = (-b)Y**lww,
Wytv+2k+1 ~ b(wu+kwv+k - ('b)kwuwv)

= Wy 4p+2k+1 " POy sy 4k

=Wy eka1Wrer T PO by sk T D0y 4y 4
= W1 ak41e

This corollary can be rearranged to give the following identity, analogous to one pre-
viously published for the sequence of Fibonacci numbers [3].

wu+p

L4, DIVISIBILITY PROPERTIES OF Wa,b)

, _ p
Wysp = Wpllp+u+p = (-b) w,w, .

If b =0, Wap =<@)" "D, Ifa=0, Fap =<1, 0, b, 0, b?, ...>. Divisibility
properties for each of these types of sequences are easily studied as separate cases. As a
result, throughout the remainder of Section 4, ¢ and b will be assumed to be nonzero numbers.

Theorem 9: 1If p and g are natural numbers, wp|wp, .
This theorem can be proved by induction, using Theorem 8 and writing

Upk+1) = Wkp-1) tp+ 1
in the induction step. The converse of Theorem 9 relies on Theorem 9 and a sequence of
lemmas.

Lemma 1: 1If p is a natural number and p > 1 and U is a polynomial that divides both w, and
W, 41, then Ulwp .

Proof: Suppose S and T are polynomials and wp = U + S and wp4y = U » Tt
w1 (x) = (/D) (V@) (T(2) - axS(x)).

Lemma 2: 1If U is a polynomial and there exists a natural number p such that U|wp and U|wp+1,
then U has degree 0.

Proog: If p = 1, U[w1 and the conclusion follows from the fact that w; = 1. If p > 1,
Lemma 1 may be applied repeatedly to show that U[wl.

Lemma 3: If {n, p, g, r} is a set of natural numbers and p >'1 and ¢ = np + r and wp}wq,

then w;|w,.
P&ooé: Since p » 1, np =1 >0, g = (np - 1) + » + 1, and so by Theorem 8,

Vg = Wpp * Wrpsy t bwnp-l t Wpe
By hypothesis, wplwq, and by Theorem 9, wplwnp and hence wplwnpmr+1. Thus, wplbwnp_lw,.
The greatest common divisor of wpp and Wnp -1 is a constant (Lemma 2), and so the greatest
common divisor of w, and wy,-; 1s a constant. Therefore, wplwp.
Thechem 10: 1f p and ¢ are natural numbers and w;lwq, then p|q.

P&OCQ: If p = 1, the conclusion is obvious. Suppose p > 1. g > p, so there exists a pair
of nonnegative integers, n and r, such that g =np + r and 0 < r <p. r =0 since, if r > 0,
Lemma 3 establishes that w,|w,, which is a contradiction, since r < p.
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A DIVISIBILITY PROPERTY OF BINOMIAL COEFFICIENTS

CARL S. WEISMAN
University of Rochester, Rochester, New York

Let p be a prime number. Let the integers a,, be defined by the identity

py\ - Y
(n) ;a’”‘(z)'
The purpose of this note is to prove that the exponent to which p divides g,, is at least

L-Mn-0/p-1.
Let Y be a set with y elements. Let Y,, ..., Y, be disjoint sets, each equipped with

a fixed bijection to Y. We wish to count the subsets N of Y, U :++ U Y, having exactly 7
elements. For such a setset N, denote by VN; the image of N N Y; in Y.
If j is an m-tuple (Z,, ..., Z,) with 1 < ¢, <4, < +++ < ¢, < p, write © € supp J if

i = 1 for some k.

Let S; = {z e UN;|x € N; if and only if 7 € supp j}. The sets S} are pair-wise dis-
joint, and N = LJ{S Iz € supp j}. Moreover, it is easily seen that any change in the order
p-tuple (N, ..., NP) of subsets must change some S So producing the sets Ny, ..., N, is
the same as producing the sets S

Let [ = LJNl, and let & be 1ts cardinality. Let s" = LJS;; then S™ consists of the

d
points of L that correspond to exactly m points of N. 1If £, is the cardinality of s",

P
therefore, one has n = £ + :E: (m - 1)t,, and n/p < L < n.
m=2
We construct as follows. First select a subset L of Y with cardlnallty £ between n/p
and n. Then select 2 subset SP of L with cardinality tp at most (p - 1)"'(n - 2). Then
select a subset S "!of L - Sp with cardinality tp-; at most (p - 2)° 1(n -2 - (p - Ltp).

Continue in this way until 5% has been selected as a subset of L - SP .. - 8% with car-
dinality t, at most 2 '(n = & = (p - 1)tp - +++ - 3%,). Now select a subset 5% of
L - 8P~ ... - 5% with cardinality %, equal to
p
n-8 =) (m- Dt,.
m=3
Define S!' = L - SP - +.+. - $? with cardinality t,. Finally, select a partition of each s"

into (p) subsets S.
m J
The above procedure yields the following expression for (53):

Zl:(%)%:(t’;);l(gt;i) (R_tp_t'z“ _t3)(€)t’ (plfl)t"; ,

in which the numbers { and ¢, are constrained by the equalities and inequalities of the pre-
ceding paragraph. In this expression, each term in the coefficient of (%) includes a power

of p at least t; + -+ + t,.1= 2 - tp >4 - (p - 17 - 2).

Lot o)

ed
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FIBONACCI FEVER

ARTHUR F. SETTEDUCATI
University of California, Berkeley, California

This is an account of a strange case of infibonacciation suffered recently by the
author, the only remedy for which was found to be a dose of HP-35 followed by SR-50 taken
at intervals of 1.618 hours. It all began in Egypt, of course, as so many things do, and
specifically with the construction of the Great Pyramid of Khufu or Cheops (no mean task—
geometrically, as it turns out). Much has been written on the contributions supposedly made
to its design by knowledge Egyptian mathematicians may have had of Pi or Phi, generally con-
sidered to have been pretty fibal. Imagine my surprise when, under the influence of the con-
tagion afflicting me both phi-sickally and mentally, I looked up the values of the trigono-
metric functions in the neighborhood of the well-~known Great Pyramid angle of approximately
51°50' (and its complement) and found what I have not seen in print anywhere, namely

sin 4 = Vb sin B = b
cos 4 =D cos B =vVb
tan 4 = Va tan B = V&
cot A =vb cot B =Va
sec 4 = a sec B =Va
csc 4 = Va csc B =a

where g = 1.618033989... and b = ¢ - 1. 1Interpolation in the tables or use of one of the
new pocket calculators quickly yields exact values for the angles:

A = 51°49'38\253 B = 38°10'21V747

This observation, that the values of the trigonometric functions at which their plotted
curves intersect are all, except for the familiar values 0, #1, /2, and #/2/2, of magnitude
a, b, or their square roots, should be sufficient to launch the new science of Fibonometry
or Phigonometry, according to taste. Our basic right phiangle is then the one with unit
hypotenuse and base b, which has the property that its altitude is the mean proportional be-
tween its base and its hypotenuse. This altitude, Vb, is the approximation to w/4 that has
led to the association of the Creat Pyramid with an attempt to represent T.

VD = 0.78615 13778
m/4 = 0.78539 81634

This approximation is good to 0.1%Z. Some other phigonometric approximations that have been
noted by pyramidographers qualify as genuine Fibonacci curiosities. They are:

A = 1/7 circle (error 0.8%

A 9/10 radian (error 0.57%

B ~ 2/3 radian (error C.06%)
Further numerical approximations that have been noted are

6a%/5 = 3.1416408 = 7 (error 0.0015%)
and ,
arc tan V/2/2 b radian

0.61547971 ~ 0.61803399 (error 0.4%)

this latter deliriously close, but to what, is uncertain.

It is, and very likely will remain, an open question as to which of these approximations
the Egyptians may have had in mind, if any, but it is nevertheless extremely curious that
most of them fall within the probable limits imposed on the precision of construction of the
Pyramid by the technology and surveying techniques available at the time.

&

Q

u

14

The numerological ramifications of this question are quite prodigious, and demand the
introduction at this point of some measurements of the actual Pyramid. Values published by
Petrie and by Bruchet have been chosen here as representative of determinations made in both
English and metric units, respectively, and the rounded values in cubits, given in the last
column are based on generally accepted conversion factors.
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Feet Meters Cubits
Half-base 377.86 115.24 220
Height 481.33 146.60 280
Apothem of face 611.93 186.47 356

One cubit = 7 palms = 28 fingers, and the inclination of a pyramid's side is expressed (e.g.,
in the Rhind papyrus) as so many palms horizontal recession of the face for one cubit vertical
rise. This quantity, the seked, is thus 7 cot A, where 4 is the inclination angle measured at
the foot of the apothem. The angle A has actually been measured from one or two intact casing
stones from the buried portion of the Pyramid and compares well with the estimates made from
overall measurements. From the values given in the last column of the above table, we deter-
mine the seked of Cheops to be precisely 5.5 (or 5 palms, 2 fingers). This is not only a nice
simple number but in relation to the cubit of 7 palms suggests, as do the ratios of the sides
of the Pyramid triangle, the value of 22/28 as an approximation to either m/4 or VB, or both,
as you wish. The error in either case is less than 0.06%.

A arc cot 22/28 = .90482 70894 radian = 51°50'34"
sin A 0.78631 83388

Measured angle of casing-stones = 51°51'

It has also been suggested that the Pyramid was designed to have a rise of 9 units in 10
taken along the edge of a face rather than at its center. This is easily checked for the
triangle that forms a vertical section through a diagonal of the (almost perfectly) square
base. Calling this corner angle of inclination (, we find

tan ¢ = 280/311.127 = 0.89995 40851

which verifies this hypothesis as well, to within 0.01%! The angle ( turns out to be 41°59'09"
or only 0.03% from the neat angle of 42° (which may recommend itself to hexagesimalists because
it is 7/60 of a circle). :

In case these excursions into the real world prove too enervating, let us indulge in a
lettle ideal-pyramid designing, starting from our basic right phiangle whose sides are in the
ratio 1:v/p = 1.27202 very nearly. Rounding this to 1.272, we might let our base be 1000 units
and our height 1272, giving us a face apothem for the pyramid, or hypotenuse of our triangle,
of 1618, a familiar number indeed. These numbers are all divisible by 2, so we get 500, 636,
809 (the last is prime). 1If we choose to be a little sloppy (will the Greeks detect it?), we
can settle for 50, 64, 81, which has the beauty that the full base is then 100 units, and our
numbers are simply 82, 92, 102, However, we would then have to settle for a pyramid angle
of almost exactly 52° (only good for 13-fetishists or card players) with its rather poor 3.15
for m and 0.621 for b. There are those who will claim this design is justified for its 81/64
approximation to va, which squares to 1.6018 for a itself. But then, some prefer bent pyra-
mids to straight._

Now there is one place where all may find good values for the extrema in our triangular
section, the base and hypotenuse, because their ratio if 1.618, that of the Fibonacci sequence.
The sequence itself yields the pairs we need, and they get progressively better as we go to
higher members, only requiring that we select for near-integer values of the mean proportional.
A little play with early members is rewarding: we immediately find the ancient 3, 5 pair with
its perfectly Pythagorean companion 4. Pyramid angle 53°08' and very primitive 3.2 for m. We
might dream of 8, 5 with its convenient 1.6 ratio, but we left 3.2 behind in the last trian-
gle, so we can't work a deal for m = 2g. It is at this point that it just dawns on us for no
apparent reason that we can get a fair estimate of the middle value (the height of our pyra-
mid) from the expression '

P, + 2F;
2

which shows us that F,, , must be divisible by 4 to give an integer middle term. The Pythago-
reans insist we write this as

5F. - 3F;

i+1 7

4

for obvious reasons, and as it is the same thing, we don't object. Now we cannot only con-
struct right phiangles, but Phiophantine ones as well. (Except for the 3, 4, 5 case, we
must not call them Diophantine, as the closer approximation to Phi precludes Di—still they
will serve the useful purpose of providing a suitable tomb should a Pharaoh Die.) Since
every F, for n = 6, 12, 18, 24, ... is divisible by 4 we have an unlimited supply of models.
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And what do we find almost as soon as we begin the painstaking task of examining this
infinity of models? The first one after the 3, 4, 5 model is the actual Great Pyramid of
Khufu! 55, 89 with the interpolated 70, upon multiplication by 4, yield the values 220,

280, 356, the very dimensions in Egyptian royal cubits that most people have found accept-
able. But already the astute observer will have found a hint of another pair that looks
interesting (do we all have our Fibonacci sequences out?), namely 377, 610, simply because
these numbers are so close to the Pyramid measurements in English feet! True, this pair
doesn't yield an integer value for the middle term (here 479.75) but the Fibonacci expres-
sion does give a value about halfway between the Pythagorean 479.55 and the round 480. Good
British foot-rules must have been scarce in ancient Egypt, and the architect had the bad luck
to choose one that was too long by 0.27%, though whether this was an effect of the higher
mean temperature at Giza or due to more esoteric considerations, such as the ratio of the
sidereal to the solar day (1.00274), the inhabitants of sunny Egypt preferring the longer
solar foot and thus assigning fewer units to a given length than Britons, whose work beneath
the moon and in the cooler northern dawns at Stonehenge and Avebury might naturally have led
them to employ the sidereal foot, remains to be determined by future investigators. 1In any
case, the reduction required is so slight that it can scarcely conceal the fact that Khufu
was built on the English system.

But wait! Had you already noticed that doubling our measurements in meters, or express-—
ing them in semimeters (perhaps in deference to Semiramis, always so phinegy with details):
230.48, 293.20, 372.94 begins to look alarmingly as i1f the French too had landed on the banks
of the Nile and had the situation well in hand—compare 233, 377 and the Fibonterpolated
value 296.5? The expansion of the French rule appears to have been greater, amounting to
1.1%, though it might be argued it was no less just.

It may be that further study will show vaguer correspondences with rough-hewn Norse
wooden rulers or sly yardsticks of China, but at least we have pointed the way. On the
vexed question of what the Egyptians hoped to achieve by their design, my own opinion is
that their architects made a wise decision to split the difference between a very accurate
representation of ™ and a very exact approximation to the Golden Ratio by choosing the very
neat 55, 70, 89 triad with its traditional 22/7 compromise, showing that after all they knew
perfectly well you can't square the circle but you can come as close as a scarab-beetle's
left front leg to doing it, and in the process keep thousands of generations of people,
amateurs and savants alike, guessing and struggling with the data to resolve the issue. No
edifice of lesser mass and durability than Cheops could have been relied upon to do the job
of preserving the sharp edge of the blade of discrimination between subtle geometric hypothe-
ses for thousands of years.

In a lighter vein, we noticed one day as the fever was wearing off and we were relaxing
to the sound of the oud, that much of the world's music can be represented, with regard to
pitches of degrees of the scale, by simple powers of ratios between 1 and 2 (the unison and
octave), with the perfect fifth (3/2) doing yeoman's work ever since the days of Pythagoras,
who probably learned about it in Egypt, according to legend. Musics of China, India, Persia,
Arabia, Byzantium, and Greece can be represented by using sufficiently high powers of 1.5
alone (try it some time, merely taking care to reduce values that exceed 2 by the appropriate
division by a power of 2 so that the set of tones remains within the octave-——negative powers
should be included in a symmetrical manner). Those who appreciate the value of common cents
in musicology will want to see results expressed in this medium of exchange currently being
favored at 1200 to the octave according to the formula

Cents = (1200/log,,2.0)log, R

where R is the frequency ratio of two pitches of interest, say any note and the fundamental
or tonic. If R is some power of a constant ratio between 1 and 2, say

R = pi/2k J =0, %1, 2, ..., #n
and k is chosen such that 1 < R < 2,
Cents = 3986.314(j log,,r - k log,,2).

The point for Fibonaccians is, of course, what happens if we choose » = 1.618...? The
result is curious. After reordering successive powers into a monotonic sequence, we have,
in cents:

30.2 69.1 99.3 129.4 168.4  198.5
237.5 276.6 297.8 336.7 366.9 397.1
436.0 466.2  496.4 535.3 565.5 595.6 (604.4)

and so on for the upper half of the octave. These values are within a few cents of forming a
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36-tone tempered scale, so that every third member of the sequence is very nearly one of the
twelve tones of our present musical scale. For perfect correspondence, such that every third
tone is 100, 200, 300, etc. cents, the value of r should be 1.618261.

The usual method of constructing tempered scales is to use a ratio » which is the nth
root of 2 to obtain a scale of n equidistant tomes. /2 = 1.019440644, The ratio 1.618261
is a power of this, in fact the 25th power. It is interesting to note that 1.618... itself
is not a frequency ratio that corresponds to a tone of our 12-tone scale, for it gives 833
cents, far enough from 800 to sound sharp and give discords. Other attempts to relate the
Golden Ratio to musical pitch have overlooked this hard musical fact. The present discussion
may serve to reinstate the Divine Proportion into the Divine Harmony.

e ddt

EXPONENTIAL GENERATION OF BASIC LINEAR IDENTITIES*

RODNEY T. HANSEN
Montana State University, Bozeman, Montana

Generalizing results of Fibonacci and Lucas numbers has been an occupation of a large
number of mathematicians down through the years. Frequently, one approach taken is to first
prove a result involving the Fibonacci sequence {F }n=0 and the Lucas sequence {Ln}n.o and
then extend it to a result or results of special cases of the sequences {F%k+r} .o and
(Lnk+r}n-o, where k and r are fixed integers. In this paper attention is focused on deriving
identities related to these latter sequences. Such results, called linear because of the
subscripts, are surveyed in [1]. The exponential generating functions for these latter
sequences are now shown to be most productive in deriving basic linear identities that the
author believes to be new. In addition, alternate derivations of several known results will
be given to show the great usefulness of these generating functions in attacking a variety of
Fibonacci and Lucas problems.

Recalling the Maclaurin series expans1on for e®

X 2 — T
ex=1+—l—!—+2—- Z—-—
and hence
Ar _ (Ax)z
(1) efr = 1 + 1, i HZ::OAn',

for any constant A, we note that the exponential generating functions for the first men-
tioned sequences are

n ax _ Bx
2:5} ET.= e -—e”
n=0 n S B
and -
ZLn %T = %" + 7
. n=0
where o = l_if!i and B = i—%fﬁi.

The exponential generating functions of the sequences of interest in this paper are
found by use of (1) to be

n "x r B":c
_afe®® - Be
) Zo er oy TE
(3) ZLnk+r - = area": + Breskx
n=0 n
K k
n _ afe T _ Bre-Bx
(4) nz.:o( l) Fk+I‘nl - o - B

*This paper was presented at the Fifth Annual Spring Conference of The Fibonacci Association,
April 23, 1972.
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k
(5) Z( " L,,k,,,m are T 4 gr -t
n=0
k+1 k
=areu z Breuax
(6) nz-oa Fnk+rn| o - B v
|
k +1
areuﬁz - SreB" x
(7 ”Z-OB F,,“rn, - T
- n .
@ 20"y = et 4 e
9 ZB k*'"n' = are® & 4+ g7 B

Exponential generating functions are given a considerable workout in [2] in deriving many
Fibonacci and Lucas identities,

By convoluting any pair of the above series and then equating like coefficients, a
linear identity is found. To begin we convolute series (2) with itself.

2 k+r Z nk-n'nl Z Z( ),71(+"‘ F(n J)k+ri:‘

and =0 g=o
r akz r_B*z \2 ‘
<a € - : g e > - %[(azrezd‘x + BZreZB":c) _ Z(QB)re(“k+Bk)’]
— 1 1,.n)x"
=3 3[2”L,,k+2,, +2(-1)"" L,:‘]n—!.
ne=o
Hence
n
n _1[,n r+l,.n
(10) > (5) Bk Fon - pyar = 2 Lutsar + 26D

a=0

The convolutions of series (3) with itself and then series (2) with (3) yield the following
results:

n
n r.n
@ Z(J)LJk""L(" DHk+r = 2nLnk+2r + 2(-1) L,
j=0
™~ /n
a2 Z (j)F-'f" trln-ker= 2" Fuxaan -
i=0

Several additional summations which reduce to simple expressions are found following the
same procedure. Convolutions of (4) with (2), (4) with (3), (6) with (7), and (8) with (9),
respectively, yield a representative class of the identities easily derived from the given
generating functions.

" {

Z("l)"Fk-H'nl Z k+ri—- Z Z( >( -D'F Jk+rF(n-J)k+ri_!- -

n=0

are—a"z _ Bre-B"x ale = - BTe Bk B
o - B a - B -

and

%[(azr + Bzr) - (aﬁ)r(e(‘“y*‘s")z + e(“"-ﬁ"):)]
ff + corn e )
1
B

%LZ, + (- 1)1“'125"’25’,([( "+ 1] %

n=0

By equating like coefficients, we have

2 )
(13) Z(;)( S Fgan Bamgyier = 2(-17 15" for m > 0,
ico
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and
2n+1 2 +1

(14) Z( " )( D Fyvr Fom—ga1piar = 0s fOT 7 2 0.
J=0

Now considering series (4) with (3), the identities

2n
(15) }: <d>( “1)7Fy 0 Dgn- jyxan = 05 for n > 0,
Jj=0
and
T (241
. n
(16) Zo< J >( D B n Lgnoganyar = 2CDTTISTERTY, for m 2 0,
=

are deduced.
Similarly, we find

n
1 (-7
a7 Z(g)a 8"" Jk+rF(n Ak+r = /_g{Fnk+2r + /5 [LZH + ("Lk_1)"]}
j=0
and
n
7\ iomd
(18) Z()(J.)aJB” Jij‘i-I‘L(n—j)k-Q-:p: Lnk+2r + (- l) [ "+1 (_Lk_l)n]-
i=

A direction of generalization of the given results as well as derivation of new results
is to find additional generating functions. Then aided by several lemmas that simplify the
exponents of e resulting from convolutions, many linear identities are found.

To generallze the given generating functions we begin with series (2). Replacing ak* by
akF and B¥ by B* ‘F, where m is a fixed nonzero integer, leads to

* ).'L'
ot ofF Y= - B BF,
OtreakF"'x _ BreBkF,‘x Z( n! nE=o( ) © n(ank+r _ Bnk+r) o
o - B a - B :E%f; o-B n!?
ne=
and hence
k k
9 ZF ot gr R
(19) nl'+v=7| - o - B

Each additional generating function given is similarly derived. (Note: Lettingm = 1, we
have F] = 1 and then are back to the original generating function.) Only three additional

generalized generating functions are listed.

¥,z r B[ x
-n ale® Tt - BTgH
(20) : ZL Fnk+rnl = a- B
- * v BAL
(21) Z Ln nk+“n' = gle® Ly 61'6:3 T
= xﬂ . k - -k
(22) D B Ly iy = @'et T 4 get

n=

The Binet definition of the numbers involved proves several useful lemmas.

1

Lemma 1: ok = oF, + F,_,, B* = BF, + F,_,, o = =(aly + L;_,), and B* = /_(st + L),

V5

for any integer k.

Lemma 2: o*E, = F,,; - 8"F,, B*F, = Fpp - o"Fy, &*L, = Lnys + 8"V5F, , and

B, = Lper - o"/5F, , for any integers k and m.

Substitution of these results into the given generating functions yields identities of
interest in themselves. For example, consider series (2) and (19). From Lemma 1, it follows
that
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n
a oF, + F - Fo + F_ "
iF L= are(aF'+’*")z _ B,e(gp“.p;_l)z ) 2( k- 1) B nE-O(B k k- 1)
“~ nk+7 a-B a-B
- n
AT n-jx”
= E Z(j)&dfjw k-171°
n=0 j=0
which yields
n
= J n-g
(23) Fgsr = Z(J)F F.7+rFk 1t

j=0
This identity has been derived by distinct approaches in [3] and [4].

' ) - B" wak = Q"F
ZF Fnk+r - aTe® Fpx  _ BreB Fpx _ ere(F"" B"F)x Bre(p x -Q"F )z

n=0 a - B a - B

Lod n @
@ 3 Fnux = BFO" ST = 87 D By - 0TSy
n=0 i

_ n=0
a -8
L4 n n
= -1 n-J+r+1 n-g
r;) ‘72_;(,7)( ) Fm+kF Fm(n—,;)-r
and so
n _ S n-j4+r+1 n-g
(24) FnFpkar = Z%(d>( -1 Fm+ka Ftn-g)-nr
i=
The corresponding Lucas number results are
1 < /27 2
(25) Lomcar = 35 90 (4 )Y L
j=0
2n+1
1 2n+1\.,d, 2 1
(26) Liznsn)k+r = S Z( J )LkLkn 1J+ Fiyps and
j=0
n
27) e I (1 D e A !
J=0

An alternate approach to identities of similar form is given in [2].

Several basic identities given early in the paper are now generalized by use of gener-
ating functions (19) to (22). It is of much interest to compare the original results with
their generalized form. We now consider the convolution of series (19) with (20).

Jrn-j .’Z?" Qreakax - BfeBthx al"eﬂkme - B?eBkme
ZZ() Ln %k+r (n-d)k+rn! = a - B a-B

n=07j=0
_ = n Jk+r+1 7 n-j x"
_Zo 5[2 Fm+1 nk+2r+ <J>(-l) Fn;ij L(n-zj)kil’n_!'
Hence, §

n
J _ 1 Jk+r+1 3 n-J
(28) Z(J>F In g an F fm-k4r T 5':2 FryyDysr + Z( >( -1y EiLm “Lin- za)k]

=0

n

j=0

and so

n wedl ( l)gk+r on n
J - =
(29) z Enlm “\Ejx+r Fin- k+r T Lin -2k | = _S_Fm+1Lnk+2r .
= J 5
j=

Results of similar form may be derived by utilization of the other generating functions. For
example, from series (19) and (21), we obtain

n

Trn = _ Jk+r+l_ g . n-g
(30) 2}(J)F L JE:—;k+rL(n-j)k+r" 2 Fm+1 nk +2r + Z( )( -1) F L F(n 25) k
i=
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and

(31)

1.

n

n Jrn-g ik + _ annn
Z <j)FmLm [E‘;'k+rL(n-j)k+r + (-1)7 rf&n-Z.j)k] =2 Fm+1Fnk +2r ¢
i=0
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IDENTITIES OF A GENERALIZED FIBONACCI SEQUENCE

H. V. KRISHNA
Manipal Institute of Technology, Manipal, South India

The purpose of this note is to give identities of third power and above of the general-

ized Fibonacci sequence with nth term H, satisfying the recurrence relation H, = pF, + gF,_,
and H, = g where F, denotes the nth classical Fibonacci number.

¢9)
(2)
(3)

We refer to the following identities of A. F. Horadam [1]:
HoBlayy = Hpyp = (FD7e
ByonBoox = BnHnynex = (F1)"eF, F,
By = By ¥ BHpnogoy

m

and also use

(4)

. s _ 2
Heyr By o Bia o Bxys = Hys = €

where e = p? - pg - ¢°.

Identity 1: HY - 2H3,\H, - H2, H: + 2H3H,,, + Hi,) = e°.

2

Identity 2: Hpuy - bHp,3 - 19Hs,, - 4Hj.y + Hy = -6,

4

Identity 3: Hy, s = 5H,, + 15Hy, 4 - 15H, , - 5Hy,, + H,.

n
Identity 4: 259 Hy = B , = 3Hy,, - 22Hn,y - Hy + 6°(n - 1) + 4
k=0

where 4 = 15p* - 32p’q - 12p2g® + 16pg® + 34q".

n
Tdentity 5: A. 189 (-1)VHY = (-1)"(HY,, - 6H4,, - 9HY,, + 24H%,, - H);
k=1

(-1)" (-Hy,, + SHi,, + 14Hy, | - Hy - 3e?).

n
k 4
B. 9?_:1(—1) B

Identity 6: 25 By, B, oH, Hyes = 26H8,, + 22H4,, + 384,y - HY - C,

where C = 19¢%n + (66p" + 70p3q + 131p%q2 + 146pq3 + 47g%).
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2n-1
Identity 7: 92(_1)kﬂh+lHk+2Hk+ka+5 = Hppes = SHyey = LiHlguey + Hipyy + 3€ + D,
4 0
where D = q(4p® + 6p’q + 4pg® + q°).

The proof of Identities 1-7 follow along the same lines as in [1], hence the details are

omitted here.
Some more identities that are easily verifiable by induction follow:

n

(a) 22.;(-1)"11,"”,, = DBy amer * Hnoy m=2,3, ...3
n

(®) 3D D Hpaur = (D Hppynyy + Hnoy me=2, 3, o3
4 . _

n
(c) 112(-1)’";1“5, (~1)" SHpysnsy + 2Hnys,) + bHy = SHn_1  m=1,2, ...;

n
2
(@) 4z°:HkH2k+1 + 2Hy = Hy, o 3Hy + Hyy By

n

(e) 3;('1)'”['1:1*-21’ = ('1)nHm+2nHm+2n+2 + HyHy o) m=2, 3, ...3
n

£) 7:;:(-1)”Hﬁ+“, = 1By By * Enlny m=4h, 5, ...

n
(8) zzg:Hk+2Hi+1 = Hyyallyyolner - HyH\Hyg
2t n
W) 23 CDTEEL = (D Bl - BolEys

n
(1) ZZ:(-l)rH3+1 = (-1 (Hr12+1Hn+lo = HuHp 4ol 43) - E,

where E = p® - 3pg? - ¢°.
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DIVISIBILITY PROPERTIES OF A GENERALIZED FIBONACCI SEQUENCE

H. V. KRISHNA
Manipal Institute of Technology, Manipal, South India

This note gives some divisitility properties of the generalized Fibonacci numbers viz
Hy=gq, H = p, Hys1 = DHy, + cHay (0 2 1), denoted henceforth by (p, o, D q) GF sequence.
The results have similarity to those of Dov Jarden [1].

For the Horadam generalized Fibonacci sequence: H, = ¢, H, = p, H,y,; = H, t H,_,

(n > 1), we have

Theonem 1: H_,, + (-1) H,_ is divisible by # for all n > k.
Pnooﬁ: The proof easily follows from the identity

(1) Hpsx + (C1)*H, 4 = L,H,-
Conollary a: HZ,, + (-1)2**'p2_. is divisible by H,; and

Corollary b: H: . + (-1)%**?p3_, is divisible by #,.
Divisibility properties of (b, ¢, p, g) GF sequence.
Theorem 2: 1f (myn) = 1 and q = 0, H,H,/H,,.

Proof: Hn = (gr* - hs™)/(r - s) and H,, = (gr"" ~ hs"")/(r - s), where r and s are the
roots of x> ~bxr -c=0and g =p - sq and h = p - rq.
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It is easily seen that H, or H, divides H,, if g = h. Since r s leads to the degen-

erate case, we must have g = 0. Also, it is necessary that (m,n) = 1.
Theorem 3: 1If p? - bpg - eq® = 0, then H,H,/Hp, .
Proog: By the identity

(2) HY = Hypy B,y = (=)' e,

[

where e
Theorem 4: For p = eq(1 - b)/(b*> + ¢+ 1 - b), if ¢ = (-1 - b)(1 + 2¢), then H,H,/H,,.

It is known from [2] that H, = pU, + cqU,.,, where the nth member of the U sequence is
defined by U, = 0, U; = 1, and Un4; = BUpyy + U, (n > 0).

On suitably combining this relation with
3) 2(pUs + cqUp_1) = (pUns1 + cqUn) + (pUn_y + cqUn_2),

it is easy to see that (b, ¢, p, q) GF sequence results in an A.P. Therefore, if H,H, were
to divide H,,, we would get

p2 - bpg - cqz, the desired result follows.

e? = (1 -Db)(1 + 20).

Further equating the initial term of the A.P. with the common difference, we get either
e=0o0r p(* + ¢+ 1-Db) =cq(l -n).

The case ¢ = 0 is already discussed in Theorem 3; hence, the other condition gives the
desired result of divisibility.
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PYTHAGOREAN PENTIDS

H. V. KRISHNA
Manipal Institute of Technology, Manipal, South India

1. INTRODUCTION

Let T, = n(n + 1)/2 denote the nth triangular number. Then we have
(1.1) (Ty)2 + (T, + )2+ Ty + )2+ o0 + (T,, + 1)

=(T2r+r+l)2+(Tér+r+2)2+-..+(TZT+2r)2
and .
(1.2) (T, + 9% + (Ty, + 1+ 12K)2 + «ov + (T,, + 1 + 12k)2

= (T, +r+ 141207+ (T,, + 7+ 2+ 12k)% + -+ + (T, + 2r + 15k)%,

2r

1, 2, 3, ...; k=1, 2, 3,

This gives a generalized identity of squares of numbers with r + 1 terms on the left-hand
side and »r terms on the right-hand side. But the triangular numbers are a particular case
of the generalized Tribonacci sequence having a recurrence relation

(1.3) Xpy3 = 3Xn4y - 3Xps1 + X,, 7> 0, with X, = 0, X, = 1, and X, = 3.

r

Therefore, the properties of the generalized Tribonacci sequence are also properties of the
triangular numbers.

The case » = 1 in equation (1.1) gives the well-known Pythagorean triad (3, 4, 5).
For r» = 2, we have the Pythagorean pentid (10, 11, 12, 13, 14). Pythagorean triads have
been studied by various authors, particularly by Teigen and Hadwin [6] and by Shannon and
Horadam [5]. The object of this note is to extend the results of the above-mentioned
authors to the Pythagorean pentids. Similar extensions are al<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>