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We now make some observations in relation to the coefficients in (3). First, as pre-
dicted by Theorem 1, the sum of the integers in row r is equal to r®. Second, each integer
in the above table is either a multiple of 3 or leaves a remainder of +1 when divided by 3.
Furthermore, for any particular row, the first entry, namely 1, and every third successive
entry, are exactly those integers which leave remainder +1 when divided by 3. We summarize

this discussion in the following theorem.

Theorem 2: Each integer in arrangement (3) is either a multiple of 3 or leaves a remainder
of +1 on division by 3. If we label the integers in any one row as o,, 0;, ..., then

0; =1 (mod 3) when 7 = 0 (mod 3), and a; = 0 (mod 3) when © # 0 (mod 3). Consequently, in
row m, there are m coefficients which leave remainder +1 on division by 3, and 2(m - 1) which
are a multiple of 3.

Proog: The form of the coefficients o; is specified in Theorem 1. Since 3 is a prime number,
the remainders after division by 3 are completely determined by the term

(i+k—l) - (i+2) G+ 1)E +2)
k-1 2 2 :
If £ # 0 (mod 3), then 7 is of the form 3m - 1 or 3m - 2, where m is a positive integer.

In either case, it is easy to see that (4 + l{;l +2) is divisible by 3. 1If, on the other

hand, Z = 0 (mod 3), then we can write ¢ = 3m, and

E+1D)E+2) _ Gm+1)(GBm+ 2)
2 2 :
Consequently,
9m(m + 1)

-1 = 5

(Bm + 1)(3m + 2)
2

and this is easily seen to be divisible by 3.
We can generalize the results of Theorem 2 as follows:

Theosrem 3: Let k be a prime number. Then each coefficient a; of Theorem 1 is either a
multiple of k, or leaves a remainder of +1 on division by k. In any one row, o; = 1 (mod k)
when 7 Z 0 (mod k), and a; = 0 (mod k) when 7 # 0 (mod k). Consequently, in row m there are
m coefficients which leave remainder +1 on division by k, and (m - 1)(k - 1) which are a
multiple of k.

The proof is similar to that of Theorem 2, and will not be included.
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PYTHAGOREAN TRIANGLES AND MULTIPLE ANGLES

LOUISE S. GRINSTEIN
Kingsborough Community College, Brooklyn, New York

In a paper dealing with Pythagorean triangles, Gruhn [1] asked how many pairs of primi-
tive Pythagorean triangles exist in which the sine of one of the acute angles of the second
triangle equals the sine of twice either of the acute angles of the first triangle. This
question may be generalized to determining pairs of primitive Pythagorean triangles where an
acute angle of the second is N times an acute angle of the first (here N can take on any
positive integer value). In addition, it may be asked whether any relationship exists among
the generators of such primitive Pythagorean triangles.

It is necessary to review first some known results from number theory and trigonometry.
A Pythagorean triangle is a right triangle whose sides are positive 1ntegers. Such triangles
will be designated by the triple (x,y,2) which satisfies the equation x? + y = 22, In the
case where x and y are relatively prime, the triangle is said to be primitive. Formulas for
the sides of primitive Pythagorean triangles in terms of generators m and n are (see [2]):
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z=m*-n*;y=2m; z=n’

+ n?

where m and n are positive integers such that

N X Xnko

m>mn; (mmn) = 1; mn is even.

For a given primitive triangle (x,y,2), the generators may be found from:
m=vV(iz+x)/2; n=V(z-x)/2.

Some formulas for the expansion of sin N4 and cos N4 in terms of sin 4 and cos 4 are as
follows (see [3, 4]):

(1) sin N4 = sin A{(2‘cos V-1 (N 12>(2 cos V-3 + (N ;3)(2 cos A)V-5 ...}
2) = (¥ sin 4 cos¥-14 - N sind4 cos?-34 + N sin%4 cos¥-54 ...

1 3 5
(3) cos N4 = <g>cos”A - <g>sin2A cos¥~24 + (ﬁ)sin“A cosV-% ... .

The following conventions will be used throughout this paper:

6: minimum of the acute angles of the original primitive Pythagorean triangle

N: a positive integer

. Ty = (xy,yy,3y), Yy even: a primitive Pythagorean triangle where one of the acute
angles is N times one of the acute angles of the original triangle

4. my, ny: generators of Ty

5 sin 6 = min (x,/z,,y,/3,)

W N =

PRIMITIVENESS OF Ty

It is obvious that pairs of primitive Pythagorean triangles having an acute angle of
the second NV times an acute angle of the first may be obtained whemever 6 < 90°/¥ or,
equivalently, min (x,/2,,y;/3;) < sin 90°/N. 1In the following, therefore, when Ty is cited,
it is assumed that this condition is satisfied.

Theonem 1: T, primitive implies T, primitive. In order to prove this theorem, the following

lemmas are needed. { x”/zﬂ, ¥ odd

: i < i
Lemma 1 (1) If z; < y,, then sin NO Yy /2y, N even;

(ii) If x, > y,, then sin NB = y,/z,.

Proof: Use is made of formula (1) for sin N8. For x; < y,, sin 8 = x,/z;. When N is even,
every term in the bracket involves 2 cos 6. Thus, the sum and also sin N6 will be a frac-
tion with an even numerator. The value of sin NO can therefore be written as yN/zN. When N
is odd, every term in the bracket except the last term will involve 2 cos 6. The last term
has value one. Thus, the bracket will be a fraction with an odd numerator and sin N6 will
be a fraction with an odd numerator, i.e., x,/2,. For x; > y,, sin B = y1/31' Therefore,
sin N6 will be a fraction with an even numerator, i.e., yn/zN.

Lemma 2: (z,,x,) = (2,,yy) = 1.
Proof: It is equivalent to show that
(22, z, sin NG)

L}

(zz, 3y cos Ne) =1
or

(x? + y3, zysin NB) = (x? + y?, &, cos NB) = 1.

Use is made of formulas (2) and (3) for sin N8 and cos Nf. Initially, consider the case
where z, < y,, i.e., sin 6 = z,/z,:

zy sin N§ = (q)xlyy'l— (g>x§yf'3+ (§>x?yf‘5...
@2 + yHQ,,y,) +x, Q)" !
2@ ,y,) + xl(zyl)ﬂ-l’
where ¢ is some polynomial function of x, and y,. Any divisor of z, and z sin NB must
divide x,(2y,)"-'. Now (z,,x,) = (2,,y,) = 1 since, otherwise, x, and y, would have a

divisor greater than one contradicting the assumption that T, is primitive. Also (2,,2) =1
since z, is odd. Thus (zz,xl(Zyl)N’l) = 1 and this implies that (z,,zysin N§) = 1.
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Similarly,

; (5)w¥ = (B)ztgd-2e (§)etyt-e ...

z,cos N6
(xf + ¥R, ,y,) +y,(2yP 3,

where R is some polynomial function of x; and y,. The same reasoning as before shows that
(2, ,8ycos NO) = 1. The case where x, > y,, i.e., sin 8 = 91/31’ can be handled in the same
manner.

The proof of Theorem 1 can be accomplished by mathematical induction. The theorem is
trivially true for N = 1. Assume that it is true for N = k and try to show its validity
for N=k + 1. Use is made of the addition formulas:

{sin.(k + 1)6 = sin 6 cos k6 + cos 6 sin kB

(4)
cos (k + 1)86 = cos B cos kB - sin B sin k6

There are three cases to consider: (i) x; < y;, k odd; (ii1) =z, < y,, k even; (iil) =, > y,.
In the first case, by use of Lemma 1, formulas (4) become

Yeer _ Ta¥k + Y1Tx
Bra1 B8 313y

xk+1 ylyk _ xlxk
Zrs1 R1% 313y

By taking 2,,, = 2,2, and working only with the numerators, the equations become:

Yie1 = Tt + YaTx
® {
Tre1 = Yy — 1%
It must be shown that (Zy,;,Yx4+1) = 1. Now, any divisor of z, and y, divides both x,,, and
Equations (5) can be rewritten as

22Tk = Yi¥rsr ~ T1%ps

Y1

Y = TYrer T Y1Txs

Since, by Lemma 2, 2, is relatively prime to both x,,, and yz,;, any common divisor of xy,;
and y,,, must divid? Ly and.yk. Therefo?e, (@ r19Yp41) = @psyy) = 1. The reasoging in'each
of the other cases is identical, appropriate substitutions being made for the various trigono-
metric functionms.

CALCULATION OF Ty

In order to compute Ty from a given triple T,, it is first necessary to check that
min (x,/2,,y,/2,) < sin 90°/N. If this condition is satisfied, then z, = z¥. Formulas (2)
and (3) can be used to calculate zysin N6 and zycos NB. For xy take the odd number of this
pair while for y, take the even number. Table 1 lists formulas for z,sin N6, zycos NG,
2y for N =1, ..., 7 and x; < y,. Formulas, identical to these, for sides of T,, ..., Ts
were cited by Vieta in 1646 [5]. He called T,—the triangle of the double angle, T';—the
triangle of the triple angle, etc.

Examples of calculated T, values are given in Table 2. The T, examples serve further
to refute Gruhn's original conjecture that. (3,4,5) and (7,24,25) are the only pair of primi-
tive Pythagorean triangles in which the sine of one of the acute angles of the second triangle
equals the sine of twice either of the acute angles of the first triangle. It is to be noted
that both Malament [6] and Beran [7] have separately corrected Gruhn's statement.

GENERATORS OF Ty

Table 2 also lists generator values for the triangles calculated. Recursive formulas
for the generators are as follows:

Theonem 2: (i) N even:

my = max {mmn, , +my_n,, mm, = nn, }

ny = min {mny_, +my_yny, mm, - nmn,  }
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(ii) N odd and greater than one:

My = MMy_1 = ™%y
ny = Imny_y 3 mymy |
Note: Use upper sign for x, < y,, otherwise use lower sign.
TABLE 1. Typical Formulas for T,, x; < y,
Ty
3, sin NO zycos N6 2y
1 Y1 z; = (x} +yDH?
221y, yi - o 23
32,57 - ) yi - 3=ziy, EH
4xyyi - 4xiy, yy - 6xiy] + ) 2
5x,y7 - 10x3y? + x3 y; - 10z3y? + 5xly, 23
6 y; - 20xiy] + bxiy, yi - 1saly) + 15ziy} - «f =
Teyy§ - 35aiy) + 2leyyl - @) y] - 21xly; + 35ziy] - 7=y, 2]

TABLE

2.

Some Examples of Ty

Ty
Example T, T, T, T, T,
A x: 5 119 2035 - -
y: 12 120 828
z: 13 169 2197
m: 3 12 46
n: 2 5 9
B x: 7 527 11753 354144 9653287
y: 24 336 10296 164833 1476984
z: 25 625 15625 390625 9765625
m: 4 24 117 527 3116
n: 3 7 44 336 237
c x: 35 1081 27755 462961
y: 12 840 42372 1816080 -
2 37 1396 50653 1874161
m: 6 35 198 1081
n: 1 12 107 840
D x: 3 7
K 4 24 - - -
2 5 25
m: 2 4
n: 1 3
E x: 15 161 495
y: 8 240 4888 - -
2: 17 289 4913
m: 4 15 52
n: 1 8 47
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Proof of Theorem 2: 1Initially, consider the case where N is odd and z, < y,. The remaining

cases are proved in a similar manner. Using the addition formulas (4) for sin N6 and cos NO
and Lemma 1, the following values are obtained for the sides of T, in terms of the generators
of Ty and T _;:

2
1

- o2 2 _ .2 2 PR
Zy = 4m My-1"1 = My My + 7y

2
yo1M My T my_ym

-1
2 2 2
yy = 2lmn (my_; - ny_1) - mN-lnﬂ-l(m§ - nl

2 2 2 2 2 2 2 2
By =my_my tmy_ny oy _my oy ny

Consequently:

my =Y (ZN + IL‘N)/Z =mmMmy_q + nminy.1
ny =V (2y = xy)/2 =mny = mymy

It is also to be noted that the sides of T, serve as generators for T,, where these
exist. Thus, for instance, for T; = (5,12,13), the sides 5 and 12 serve as generators for
7, = (119,120,169). Similarly, for T, = (1081,840,1369), the sides serve as generators for
T, = (462961,1816080,1874161).
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PROOF THAT THE AREA OF A PYTHAGOREAN TRIANGLE IS NEVER A SQUARE

CURTIS R. VOGEL
winnett, Montana

Prove that the area of an integral-sided (Pythagorean) triangle is never a square
integer. In the diagrams provided below, the two triangles are equivalent. Thus, a = a,
b=n, and ¢ = (n + k), where a, b, n, and k¥ as well as g are integers. A4 = the area of the
triangles.

e b = 2g%a e= (n+ k) b=mn
in
a a
A= %{ZBza)a = g2g%, which is a square a® + b? = o?
a® + b? = o? a® + n* = (n+ k)2; a® = 2kn + K?
a’ + (28%a)? = o* | @kn + K2) + n* = (n + k)2
a® + 4a"a? = o
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