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It is easily seen that H, or H, divides H,, if g = h. Since r s leads to the degen-

erate case, we must have g = 0. Also, it is necessary that (m,n) = 1.
Theorem 3: 1If p? - bpg - eq® = 0, then H,H,/Hp, .
Proog: By the identity

(2) HY = Hypy B,y = (=)' e,

[

where e
Theorem 4: For p = eq(1 - b)/(b*> + ¢+ 1 - b), if ¢ = (-1 - b)(1 + 2¢), then H,H,/H,,.

It is known from [2] that H, = pU, + cqU,.,, where the nth member of the U sequence is
defined by U, = 0, U; = 1, and Un4; = BUpyy + U, (n > 0).

On suitably combining this relation with
3) 2(pUs + cqUp_1) = (pUns1 + cqUn) + (pUn_y + cqUn_2),

it is easy to see that (b, ¢, p, q) GF sequence results in an A.P. Therefore, if H,H, were
to divide H,,, we would get

p2 - bpg - cqz, the desired result follows.

e? = (1 -Db)(1 + 20).

Further equating the initial term of the A.P. with the common difference, we get either
e=0o0r p(* + ¢+ 1-Db) =cq(l -n).

The case ¢ = 0 is already discussed in Theorem 3; hence, the other condition gives the
desired result of divisibility.
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PYTHAGOREAN PENTIDS
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1. INTRODUCTION

Let T, = n(n + 1)/2 denote the nth triangular number. Then we have
(1.1) (Ty)2 + (T, + )2+ Ty + )2+ o0 + (T,, + 1)

=(T2r+r+l)2+(Tér+r+2)2+-..+(TZT+2r)2
and .
(1.2) (T, + 9% + (Ty, + 1+ 12K)2 + «ov + (T,, + 1 + 12k)2

= (T, +r+ 141207+ (T,, + 7+ 2+ 12k)% + -+ + (T, + 2r + 15k)%,

2r

1, 2, 3, ...; k=1, 2, 3,

This gives a generalized identity of squares of numbers with r + 1 terms on the left-hand
side and »r terms on the right-hand side. But the triangular numbers are a particular case
of the generalized Tribonacci sequence having a recurrence relation

(1.3) Xpy3 = 3Xn4y - 3Xps1 + X,, 7> 0, with X, = 0, X, = 1, and X, = 3.

r

Therefore, the properties of the generalized Tribonacci sequence are also properties of the
triangular numbers.

The case » = 1 in equation (1.1) gives the well-known Pythagorean triad (3, 4, 5).
For r» = 2, we have the Pythagorean pentid (10, 11, 12, 13, 14). Pythagorean triads have
been studied by various authors, particularly by Teigen and Hadwin [6] and by Shannon and
Horadam [5]. The object of this note is to extend the results of the above-mentioned
authors to the Pythagorean pentids. Similar extensions are also possible for the general
Pythagorean n-tids of (1.1).
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2. GENERALIZED FIBONACCI PENTIDS
The Horadam [2] generalized Fibonacci sequence satisfies the recurrence relation
Hy,o =Hpyy +H, (m2x1).
For this sequence, we have the identity
2.1 Hips + (Hnyo + Hn)? = (Hpyy = H)? + QQHpi2)? + BZ.
This can be easily checked by the substitutions
Hy =p, Hyyy =P +q.
Then corresponding to a result of Shannon [4], we have the identity
(2.2) Ve * Wais + Un)? = (Unes = Un)? + (2 5)° + U,

where U, 1s the nth term of the Tribonacci [1] sequence whose recurrence relation is
Uns+3 = Unyy + Upyy + Uy, with U;, U,, and U, as the initial terms.

Pﬂooﬁ: On using the recurrence relation, we obtain

(A) UrH-h - Un = 2(Un+2 + U?H-l) oo
and
(B) Upey ¥ Up = 2Unyy onn -
On multiplying (A) and (B), we have
U"a"'“ - Ui = 4Un+3[Un+2 + Uns1l
or
U:-Ho = Ur% + 20U, 3 Upsy = Unl

U2 + [2Un43]% + [Upyy = Unl® = [Upyy + Unl?,

from which the desired result follows. Comparison of (2.1) with (2.2) suggests a similar
identity for the general recurring sequence V, of order r with

r-~1
Vigr = Z Vosis 21,
i=0
with the initial values V,, V,, ..., V..
Identity
2
(2.3) Borar ¥ Wnar + Val? = Wy = V210 + [20,4,)° + 7,

in which » = 2, gives (2.1), and » = 3 gives (2.2).
For the generalized Fibonacci sequence W, (a, b, p, g) of Horadam [3], we have

(2.4) {QWn3}® + (2P0, + Wa)? = (2P0, ., - Wad® + {4PW, )2 + W)
where @ = p/q? and P = (p? - q)/2q%. This follows easily from a lemma of Shannon [5]:
(2.5) (pz - q)Wn+2 - pwn+3 = qzwn'

But (2.4) is in a form which can be generalized for higher-order recurrence relations.
Therefore, we have the following:

Theonem 17: All Pythagorean pentids are recurrence pentids.

3. PYTHAGOREAN n-TIDS

In this section, the method of Teigen and Hadwin [6] is extended to Pythagorean n-tids.
Teigen and Hadwin proved that the Pythagorean triad (a, b, ¢) can be represented by

(3.1) a=x+2, b=y+z,c=x+y+ 2, where z, y, z are positive and 2xy = z°, 2z even.

For the Pythagorean pentid (a, b, ¢, d, e), we have

(3.2) a=x+y+z,b=y+z+t,c=z+t+u d=x+y+ 2+t and
e=y+z+t+u, wherex, y, 2, t, u are positive, and
(3.3) 2% =2(xy + yt + yu), 2 even.

Similarly, for the Pythagorean septid (a, b, ¢, d, e, f, g), we have
(3.4) a=x+y+z+t,b=y+z+t+u,c =z +t+u+ v,d=t+u+y+w,
e=x+y+tz+t+tu, f=y+z+t+u+tv,andg=z+t+u+v+uw

68

T emC



was h A A A A A /4

where all the right-hand side parameters are positive, and
(3.5) t? = 2(zu + yv + 2w + zu + zv), t even.

Similar extensions follow for the n-tids. )
An alternate method of generating infinite numbers of Pythagorean n-tids from a given
n-tid is discussed in [7].
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A TRIANGLE FOR THE BELL NUMBERS

JEFFREY SHALLIT
University of California, Berkeley, California

The Bell, or exponential, numbers B, are defined by

15k _1(0" 1" 2"
1 Bn=gk H_E(ﬁ-'.l_!-’-ﬁ-'—”'
=0

The first twelve Bell numbers are given in the following table:

TABLE 1. Bell Numbers

N

B

HFOwoo~NOTWULISEWNEKEO
w
N

[

The Bell numbers also appear in the Maclaurin expansion of e :

. = B xk 2 ® . 15"
(2) ee =eZ—’7‘<!—=e<l+—lx—!+%"9!—+§:%—+4—f+--->

The Bell numbers can be generated recursively by an interesting method described in [2].
If we take the array described in this article and "flip" it about and then reorient it, the
following triangle appears. This triangle is similar in form to Pascal's triangle. We shall
call it the "Bell Triangle," and denote each element by B'’(n,r). This notation is similar to
C(n,r) for Pascal's triangle. There are three rules of formation for this triangle.
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