CIRCULANTS AND HORADAM'S SEQUENCES
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In a certain problem in knot theory it became necessary to evaluate the following n x n (
determinant: (
-(2k+1) k 0 0 0 ¢
k -(2k+1) «k 0o .
0 0 k -(2k+1) k& . 0
1) ¢, (k,-(2k +1),k) = ..
0 k -(2k+1) k
x 0 %k -(2k +1)
-2k +1) k 0 0 O k
where k is an integer. The purpose of this note is to express this determinant (and other
determinants of the same form) in terms of Horadam's generalized sequences (see [5]).
C,(k,-(2k +1),%) belongs to the class of determinants known as "circulants." A deter-

minant is a circulant if each row is a cyclic permutation of the
row of an n x n circulant is (a,, a,, ..., a,_;) then the second
«e.s Q,_3), the third (a,_,, an-1, Qys --+5 ay_3) and so on. If
denote the value of the #n x n circulant with first row (a,, a;,

preceding row. If the first

row will be (a,_;, ag, a;,

we let C(ao, Ayy eeey a"_l)
., Qp-1) then the following

pretty result holds (see Aitken [1, p. 123] or Muir [8, p. 445]):

Theonem 1: Let w = exp (2nZ/n). Then
n-1 . A X
(2) Clags ays «vor ay_y) = Il (@ + @07 + a,w? + <+ + g, j0®@"Dd),
i=0

For the particular case in which we are interested, all but 3 consecutive terms in each
row of the determinant vanish. In agreement with (1), we will let C,(ao, a;, a;) denote the {

value of the n x n circulant whose first row is (a,, a,, a,, 0, ., 0). Equation (2) then
reduces to

n-1 . .
(3) Cnlags ap, a,) = ‘HO (@, + a;w? + a,w?d).

j=

Here g, a,, and g, may be any real or complex numbers. We will assume throughout that
ap, # 0. It is also reasonable to assume that n > 3. It is clear that (up to sign)
Cnlay, ays a,) is equal to C(0, .5 0, ay, a;, a,, 0, ., 0); i.e., it doesn't really
matter where the 3 consecutive terms appear in the first row of the circulant.

As a consequence of Theorem 1 we get:

Conofhary 2: Llet x,, x, be the roots of the quadratic equation
2 -
(4) ax? +ax+a, =0 (a, #0).
Then
(5) Culays ays a,) = ap(e] = 1) (xf - 1).
Proof: From (4) it follows that
(6) z, +z, = -a,/a, and x,x, = a,/a,.
Again let yu = exp (2mi/n). Then
n-1 . X n-1 . 24
aj(x] = Dxy - 1) =aj [1&, - w)(x, - w) =af [](x,z, - (=, + z)w? + w??)
i=0 i=0

1 n-1
‘ . ) 2i
(a, +a,w’ +a,w?) = [] (a, +a,w’ +a,w??)
i=0

n-1 ) X n-
ag [1 (ay/a, + (ay/aw +w?) = T1

Jg=0 Jj=0

and the desired result then follows from (3).
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Corollary 2 will suffice for our purposes. However, it should be noted that for an
arbitrary circulant with first row (a,, Ays oves an_l) an analogous result holds relating
C(ays -++» Qn-1) and N(z} - 1) where x,, ,, ..., X,-, are the roots of a,x"~! + g,z"- %2 +
... +a = 0 (compare Muir [8, p. 471]).

n-1

Following Horadam [5] for any integers p,q we define the sequences u, = u,(p,q) and

v, Z v,(p,q) (for n > 0) recursively by

(7) ug =1, u; =p, U, =pun_1 - qup-2 (1 22)

and

(8) UO = 2; U]_ =Pp Uy = PVn-1 ~ QVn-2 (n—>-2)

In particular . .

9) u,_,(1,-1) = F, (forn > 1)

and

(10) v,01,-1) = L, n > 2)

where {F,} is the ordinary Fibonacci sequence starting with F, = F, = 1 and
(11) Ly=Fuy; +tFpey (n2>2)

is the associated Lucas sequence.

The following can be verfied easily (see Horadam [5] and Bachmann [6, Chap. 2, pp. 73-78]):

Lemma 3: Let a,B be the roots of

(12) z? - pr+qg=20

and let d = +/p® - 4q. Then for all n > 0

(13) an*tl - 8" = du (p,q)
and

(14) a” + B = v,(p,q).

Equations (13) and (14) remain true even in the 'degenerate" case d = 0 (i.e., p2 = 4q
and g = B), but then (13) is no longer useful for determining u,(p,q). Note further that
although p,q are assumed to be rational integers, the recursion formulas (7) and (8) make
equally good sense if we allow p and g to take real or complex values. Equations (13) and
(14) (and most of the results stated below) remain valid in this more general setting.
However, in this note we will restrict ourselves to integer Horadam sequences (and to
circulants with integer entries).

Combining Corollary 2 and Lemma 3 gives:

Theonem 4: For any integers a, b, and ¢ (a # 0),

(15) Cp(a,bye) = a™ + ¢ - v,(-b,ac) (n > 3).
Proof: From equation (5), we get

(16) Cnlasb,e) = an(x] - D(xj - 1)
where x,,x, are the roots of

a7 ax? + bx + ¢ = 0.
Multiplying (17) by g and letting z = ar, we get

(18) 22 4+ bz + ac = 0.

The roots of (18) are z, = ar, and 2z, = axr,. Therefore,

(19) gz, +z2,=-b and z,z, = ac.

If we let p = -b and g = ac in Lemma 3, then equation (14) becomes
(147) 2] + 27 = v,(-b,ac).

Now plug x, = z,/a (¢ = 1,2) into (16) and use (14') and (19) to get

C,(a,b,e)

a"((z,/a)" - 1)((z,/a)" - 1)

n n + n
) an<(2122) PG 22)>

a2n Q"

e + a” - v,(-b,ac), which is equation (15) above.
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Thus we can use properties of C,(a,b,c) to give us information about v,(-b,ac) and
vice versa. For example:

Corofdary 5: For any integers r, a, b, and ¢ (a # 0,

(20) v, (~rb,r’ac) = r"v,(-k,ac).
Proof: Equation (15) implies that
(21) Cp(ra,rb,rc) = rn(a™ + en) - v, (-rb,r%ac).

But C,(ra,rb,rc) is an n x n determinant. Therefore,
(22) Cn(ra,rb,re) = r"C,(a,b,e) = rr(a™ + ¢™ - v, (-b,ac))

and (20) follows.
Equation (20) can also be proved directly [i.e., without introducing C, (ra,rb,rc)]
by comparing (a” + B") with (af + Bj) where a,B (resp. ogy,B,) are the roots of

z2 + rbx + r?ac = 0 (resp. x2 + bx + ac = 0).
When ¢ = a [as is the case in (1) above], then we can express C,(c¢,b,c) in terms of
Horadam sequences which are different from the sequence {v,(-b,c?)} given by Theorem 4.

Theconem 6: Let b,c be integers ¢ # 0. Let r = —(b + 2¢) and suppose r # 0. Let
u, = u,(r,-re) and v, = v, (r,-re). Then for each m > 2,

(23) Cpm_1(esbye) = =(vy, )% /¥ 71
and '
(24) C,, (e b,e) = =% - 4¢?) (u,y, )2 /r*".

The proof of Theorem 6 depends on:

Lemma 7: Let r = —(b + 2¢). Then,

(25) (Vg1 s=re))? = v, (-rb,(e)?) - 2(re)™" "}
and
(26) B - 4e?)(u,, _, (@,~re))? = v,, (-rb, (rc)?) - 2(rc)?".

Proog of Lemma 7: We will prove (26) by using (13) and (14). The proof of (25) is almost
exactly the same and will be left as an exercise.
Let o,BR be the roots of x2 -~ rx - re¢ = 0. Then,

(27) aB = -rc.

r + /r® + 4re r - Vr? + bre

Choose ¢ = =———————— and R = ————— . Note that d? = »2 + 4ye = b? - 4e?, since

2 2
r = -(b + 2¢). Using this fact, it is easily verified that
(28) ) a? = ra, and B%? = rB,,
- /2 _ 4.2 b _ /P2 _ 4,2
where o, = b+ k; 4" and Bo = b ké " ire the roots of x? + bz + ¢ = 0.

Now applying Lemma 3 (first with respect to 0,8 and then with respect to 0,,B,), we get

(B% = 4e?) (uyy, _(r,-re))? = (2% + bre) (u,, ,(r,-re))?
= (dugy_1(r,-re))? = (a7 - B*7)°
= ()2 + (BY)2" - 2(aB)2"
= 2" (2" + B2") - 2(-re)?™  [using (27) and (28)]
= r’"p, (~b,c?) - 2(re)?"
= v, (-rb,(re)?) - 2(re)?"  [using (20)].
Proot of Theorem 6:

rir-1c, (e,b,e) = Cy,_,(re,rb,rc)
= 2(re)?" "t ~ v, _(-rb,(re)?) [using (15)1]
= ~(vy, -, (r,-re))? [using (25)].

This proves (23). Equation (24) follows in the same way from (26).
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When Irl = g2, equations (23) and (24) can be rewritten in the following simpler form:

Conollany &: 1If (b + 2¢2) = +s?, then for all m > 2,

(29) Com -1 (23b5e) = £(vy, 1 (s,2e))?

and

(30) C,, (e b,e) = 7(b = 2¢)(uy, ,(s,%c))?.

Proch: The proof of (30) depends on the fact that for any integers r, p, and g
(31) u, (rp,r*q) = r™u,(r,q).

This is analogous to (20) and is easily seen by comparing (a"*! - g"*1)/d and
(ap*? - Bg”)/do where o,B (resp. 04,B,) are the roots and d (resp. d, = d/r) is the dis-
criminant of x? - rpx + r?g = 0 (resp. 22 - px + g = 0).

Now if » = =(b + 2¢) = 3¢2, then it follows from (24) and (31) that

Com(cibye) = =(B% = 4e?) (uUy, _, (78%,28%¢)) 2/ (8%) 77

(32) 2 2
-(b% - 4
( 52 )(u

since -(b? - 4¢?) = r(b - 2¢) = 38?(b - 2¢). It also follows from (31) that for any p,q
u,(-p>,q) = u,((-Lp,(-1)%q) = (-1)"u,(p,q).

a1 (F8,%0))% = 3 (b - 20) (u,, _, Gs,%e))?,

Therefore,

(MZM-I("S’ic))Z (“2m-1(+3,ic))2

and it doesn't matter which sign we choose for s on the right side of (32). This proves
(30). The proof of (29) is essentially the same.

Note that if we allow p and g to take on real or complex values in the recursion for-
mulas (7) and (8) defining u,(p,q) and v,(p,q) then the above argument shows that (23) and
(24) can always be simplified to

(29" Com_1 (esbye) = =(v,, _, /r,-e))?
(301 Conlc,bye) = (b = 20)(u,, (/r,-e))*
where r = -(b + 2¢).

If in Corollary 8 we let b + 2¢ = pz and ¢ = g, then (29) and (30) can be rewritten as

(33) Com-1 GP% - 2q,9) = (vy, 1 (@,0))?

and
(34) sz(q’pz - Zq’q) = _(pZ - 4Q)(u2m_1(p,(]))2-
The cases b + 2¢ = #1 are of particular interest.
If p + 2¢ = +1 and we let ¢ = k + 1, then (29) and (30) become
(35) Com_ 1 (K+1,-(2k +1) ,k +1) = (v,,_,(1,k+1))?
and
(36) Cop(k+1,-Q2k +1),k +1) = (4k +3)(u,, ,(L,k+1))%.
If p + 2¢ = -1 and ¢ = k, then we get
(3;) Cpm g (ko= (2K +1) k) = =(vy, _, (1,-K))*
an
(38) €, (ko= 2k +1),k) = =(4k +1) (uy, _; (1,-K)) 2.
For k = 1, equations (37) and (38) reduce to
(377 Com-1(1,-3,1) = -L%, _,
and
(38") C,,(1,-3,1) = -5F; .

(Compare Fielder [2, p. 356].) The determinant dealt with in Fielder's paper is an example
of a "continuant'"—another important class of determinants (see Muir [8, Chap. XIII]).

The circulants ¢, (k,-(2k +1),k) and C,(k +1,-(2k +1),k +1) arose in the following topc-
logical problem: To each pair of odd integers a,b satisfying a > 3, |b| < a, (a,b) = 1,
there can be associated a "knot with two bridges' (see Schubert [10]). Let M(n,a,b) denote
the n sheeted branched cyclic covering the two-bridge knot associated with the pair {a, r1.
Then it can be shown (Minkus [7]) that the one-dimensional integral homology group of
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M(n, 4k + 1, 4k - 1) is an abelian group on n generators 4,, A,, ..., A, subject to the n
defining relations k4; - (2k + 1)A;,., + Kd;4, =0 (£ =1, 2, ..., n), subscripts reduced

mod » when necessary. Similarly, the homology group of M(n, 4k + 3, 4k + 1) has defining
relations (k + 1)4; - (2k + )A;4, + (K + 1)434, =0 (£ =1, 2, ..., n). Thus,

Co(k, =(2k + 1), k) and C,(k + 1, -(2k + 1), k + 1) are the determinants of the "relation
matrices" of these groups. When these circulants are nonzero, they are (in absolute value)
equal to the orders of these groups (compare Fox [3, p. 149]). Note that C,(k + 1, -2k + 1),
k + 1) and -C,(k, -(2k + 1), k) are perfect squares for odd values of n, in agreement with

the theorem of Plans [9]. 1In the case k = 1 [equations (37') and (38') above], the two-bridge
knot of type {5, 3} is just the figure-eight knot. The homology groups of the branched cyclic
coverings of this knot have been determined by Fox and agree with (37') and (38') (see [4,

p. 1931). '
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AN EXPANSION OF GOLUBEV'S 11 x 11 MAGIC SQUARE OF PRIMES
TO ITS MAXIMUM, 21 x 21

LOREN L. DICKERSON
Huntsville, Alabama

Edgar Karst, in the December 1972 issue of The Fibonacei Quarterly presented Golubev's
magic square of order 11 consisting of prime numbers of the form 30x + 17 and asked whether
someone is able to attach a frame of order 13. The characteristics in Golubev's square are
additionally '"magic" in several ways which are repeated from the article cited. The stated
requirements imposed were that:

1. All n rows, n columns, and 2 major diagonals have the same sum equal to n x the central
number (n x 63317 in Golubev's square).

2. All included numbers be prime numbers equal to 17 plus an integral multiple of 30, with
the multiple not divisible integrally by 17.

3. The sums of each pair of opposite (top and bottom or left and right) borders, excepting
corner numbers, equal 2 x (the order less 2) x the central number [here 2 x 7 x 63317
or 2 x (n - 2) x 63317].

4. The sums of opposite outer elements in any row or column equal 2 x the central number,
for any order.

5. The opposite corner primes in the squares of each order have the sum 2 x the central
prime (2 x 63317).

The addition of frames of the order 13 through 21 was as far as I could go with posi-
tive primes of form 30x + 17 centered about 63317, following the rules imposed above. There
were about 46 unused primes left over in the series. This is of course not enough for
another (23rd-order) frame, but the availability of more primes in the progression suggests
the possibility of rearrangements of complementary pairs and that an additional degree of
magicality might be accomplished in the 21 x 21 square.
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