Hy, = [(1 +vp)/21" + [(1 - ¥p)/2]" (n > D).
Now, since & and B satisfy z? - x - [(p - 1)/4] = 0,
Ho,, = a"*2+ B"%% = a"(a®) + B"(B?) = (o + [(p - 11/4]) + B"(B + [(p - 1)/4])
antl 4+ Bl 4 [(p - 1)/41@™ + B") =H,,, + [(p - 1)/4]H,.
Furthermore, H, = (1 + /p)/2 + (1 - /p)/2 = 1 and
Hy, = [(1 +vp)/21% + [(1 - /p)/2]* = (p + 1)/2.

Thus, the analog of Whitford's generalization of the Fibonacci sequence is the generaliza-
tion of thg Lucas sequence,

H =1, H, = (o +1)/2, H,,, = Hyey + [(p - 1)/4]H, n>0D.

Note that, of course, the Lucas sequence corresponds to the case p = 5.
The following table, analogous to Whitford's gives the first ten terms of the sequences
corresponding to the first five positive integers of the form 4k + 1.

T 0eeec

P-1

p A Gl Gz Gg Gl‘ G5 GG G7 Ga Gg Glo
1 0 1 1 1 1 1 1 1 1 1 1
5 1 1 3 4 7 11 18 29 47 76 123
9 2 1 5 7 17 31 65 127 257 511 1025
13 3 1 7 10 31 61 154 337 799 1810 4207
17 4 1 9 13 49 101 297 701 1889 4693 12249

The following are some of the identities satisfied by the sequences H, and G,.

Hn+1
(1 lim —== = (1 + v/p)/2,
N+ e n

(2) GZn = Gan’
3) B! = H, +2[(1 -p)/4]",
(4) Hﬂ = Gn+1 + [(p - 1)/4]Gn-1’
(5 pC: = Hy, - 2[(1 - p)/41".

The major change in the generalized identities occurs where af = -1 appears in the Fibo-

nacci/Lucas identities, with af = (1 - p)/4 in their generalizatioms.
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ON THE DISTRIBUTION OF QUADRATIC RESIDUES

M. G. MONZINGO
Southern Methodist University, Dallas, TX 75275

For p an odd prime, each of the integers 1, 2, ..., p - 1 is either a quadratic residue or a
quadratic nonresidue. In [1], Andrews proves that the number of pairs of comsecutive quadratic
residues, the number of pairs of consecutive quadratic nonresidues, etc., are the values listed
in Table 1. This note is a further investigation of the distribution of the quadratic residues
and quadratic nonresidues which will include new proofs of the results in Table 1.

The integers 1, 2, ..., p -~ 1 can be partitioned into disjoint cells, in an alternate
fashion, according to whether they are consecutive quadratic residues or quadratic nonresidues.
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For example, for p = 13, the quadratic residues are 1, 3, 4, 9, 10, 12, which lead to the

partition:
1 2 3,4 5,6,7,8 9,10 11 12

(this is much easier to picture when written vertically).

Notaticn: 1In this note, '"quadratic residue' and ''quadratic nonresidue' will be abbreviated by
gr and gqnr, respectively. For a fixed odd prime p, & will denote the number of singleton cells,
e will denote the number of integers which appear as left end points of cells (or right end
points since a nonsingleton cell has a left end point and a right end point), and 7 will de-
note the number of integers which are interior points in the cells (that is, excluding the end
points). Finally, subscripts r and n will denote quadratic residue and quadratic nonresidue,
respectively.

TABLE 1
(r =) bk + 1 4k + 3
qr-qr pairs (p - /4 (r - 3)/4
Gr-qnr pairs (v - L)/4 (p + 1)/4
qnr-qr pairs (g - 1)/4 r - 3)/4
qar-qnr pairs (p - 1)/4 p - 3)/4

For example, for p = 13: 1, 2, 11, 12 form singletons, 6 and 7 are interior points, and
3, 5, 9 are left end points; ¢ = 4, ¢ = 2, and ¢ = 3.

Theonem 1: The partirioning into celils is symmetric in that if, for example, there are k ele-
ments in the first cell, then there are kX elements in the last cell, etc.

Proof: For p = 4k + 1, x is a qr if and only if p - & is a2 qr. Therefore, for a cell of k
consecutive qr (gmr), there is a corresponding cell of . comsecutive gr (gqnr). For p = 4k + 3,
x is a gr if and only if p - = is & gnr. Therefore, for a cell of k comsecutive qr (qnr),
there is a corresponding cell of % cousecutive gqnr {(qr).

Conoflany 1: 1f the number of cells is odd, then the middle cell must contain an even number
of elements.

Procf: If the middle cell contained an odd number of elements, then due to symmetry (the num-
ber of elements in cells preceding the middle cell egqualing the number of elements in cells
following the middle cell), the partition would contain an odd number of elements. But, this
would contradict the fact that there are p - 1 elements in the partition.

Conoflary 2: The first and last cells are singletons if and only if p # #1 (mod 8).

Proof: The conclusion follows from the fact that 1 is a qr, 2 is a qr if and only if p = %1
(mod 8), and the partition is symmetric.

The following lemmas, involving the Legendre symbol, are proven in [1]. Lemma 1 also
appears as an exercise in [2].

S~ (ale + 1)
Lemma 1: 2: (9—5E;~i—) = -1.

a=1

In Lemma 2, (g) is defined to be O.

P
Lemma 2: 3 ((a - I;fa + 1)) - 1.

a=2 -

Theotem Z: There are (p + 1)/2 cells.

Proof: In the summation in Lemma 1, there are (p - 3)/2 plus ones and (p ~ 1)/2 minus ones,
since there are p - 2 terms with one more minus than plus. Now,

<a(a + l)) - -1

rel

4

if and only if a is in one cell and ¢ + 1 is in the next cell. Thus, there are (p - 1)/2 + 1 =
(p + 1)/2 cells.
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The result in the next corollary will be extended considerably in a later theorem.

Conollany 3: The partition must contain at least two singletons, that is, s > 2.

fﬁggﬁ: Suppose each cell contained at least two elements; then, there are at least
2 ﬁf:%ll_ =p+1

elements, a contradiction. By Corollary 1, the middle cell is not a singleton; hence, by

symmetry, there must be at least two singletonms.

Theorem 3: The following equations are identities:

(1) s+e=(p+1)/2,
(2) e+1=(p-3)/2,
3 s =1+ 2,
(4) s+2+171=p- 1.

Proof: Part (1) follows from Theorem 2, since each cell is either a singleton or has a left
end point. As seen earlier, there are (p - 3)/2 plus ones in the summation in Lemma 1. Now,

(a(aFT 1)) -1

if and only if a and a + 1 are in the same cell. Hence, a must be a left end point or an in-
terior point of a cell, and (2) follows. Part (3) follows from the subtraction of part (2)
from part (1). Part (4) follows from the fact that the number of left end points equals the
number of right end points, and there are p - 1 integers in the partition.

A counterpart to the next lemma will follow Theorem 4.

Lemma 3: Let p = 4k + 1; then, a is a qnr singleton if and only if a’, the inverse of a, is a
gnr interior point.

Proog: First note that a # 1, p - 1. The conclusion follows from the fact that

(a—’—l> =1, <5> = -1, (a + 1) = 1, if and only if
p P p

' 4 !
(525 () (£ e

() - (252 ) - oo

Theonrem 4: The results in Table 1 hold.

Proof: 1I1f p = 4k + 3, then there are an even number of .cells, the first cell qr and the last
cell gnr. A qr followed by a gqnr occurs only between a cell of qr followed by a cell of gnr.

Hence, there are 1/2£2—§—ll pairs of cells of this type, and so (p + 1)/4 pairs of qr followed
by gqnr. A gnr followed by qr occurs only between a cell of qnr followed by a cell of qr. These
pairs occur starting with the second cell and ending with the next to the last cell, yielding

1/2[;E—§——l - 2] = SE_i_él pairs. Recalling the notation and the symmetry discussed in Theo-

rem 1, e, = e,. Similarly, i, = ¢n. From (2) of Theorem 3, er + e, + 2, + 2, = (p - 3)/2,
which yields e, + 2, = e, + 2n = (p - 3)/4. Now, a pair of consecutive qr (qnr) occurs only
in a nonsingleton cell, and there are precisely as many such pairs as there are qr (qnr)
interior points plus one per such cell. This total is precisely e, + 2,(ey, + Zn).

If p = 4k + 1, then there is an odd number of cells, the first and last consisting of qr.
This implies that the number of pairs of a qr followed by a gqnr (first cell to second cell,
third cell to fourth cell, etc.) equals the number of pairs of a qnr followed by a gr (second
cell to third cell, fourth cell to fifth cell, etc.). Since these pairs result in (p - 1)/2
minus ones in Lemma 1, there are (p - 1)/4 pairs of each type. In particular, it follows that

en-f-sn:.g.g_z_l)'

Now, from Lemma 3, s, = ©,, and so, from (2), e, + e, + Zp + T, = (p - 3)/2. Therefore,
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ep +1p = (p - 3)/2 - (en + 84) = (p - 5)/4. Also, e, + 1, = e, + 8, = (p - 1)/4. And the
conclusion follows as in the previous case.

Lemma 4: Llet p = 4k + 3 and @ an element not its own inverse; then, a is a qr singleton if and
only if a', the inverse of a, is a qr right end point.

Pnooﬁ: The conclusion follows from the fact that

() -5 () () -
P P p

() 5 - (22
() - (522 - ()

Lemma 5: Suppose that a # p - 1, p; then, in the summation in Lemma 2, (

-1, where

(-D(-1) = 1=1.

(@ - 1)(a + 1)) .
P

if and only if a is a singleton or an interior point.

Proo4: The Legendre symbol ((a = IL(a + 1)) =1 if and only if a - 1 and a + 1 are both qr

or both qnr. If g is of the same type, then a is an interior point; if not, then a is a
singleton.

TABLE 2
(p =) 8k + 1 8k + 3 8k + 5 8k + 7
s (p - 1)/4 (p + 5)/4 (p + 3)/4 (p +1)/4
e (p + 3)/4 (p - 3)/4 (p - 1)/4 (p + 1) /4
i (p - 9)/4 (p - 3)/4 (p - 5)/4 (p - 7/4

Theorem 5: The results in Table 2 hold.

Proo4: With the use of Equations (1) and (3) of Theorem 3, the conclusions will follow once
the results are established for the number of singleton cells. For the cases 8k + 3 and 8k + 7
consider Lemma 4. If p = 8k 4+ 7, then the first and the last cells are not singletons since 2
is a qr. Thus, no singleton is its own inverse, and 8 = e (recall the symmetry). From (1) of
Theorem 3, s = (p + 1)/4. If p =8k + 3, 1 and p - 1 are both singletons not included in
Lemma 4; hence, s = e + 2. From (1), s = (p + 5)/4. TFor the cases 8k + 1 and 8k + 5, comnsider
Lemma 5. If p = 8k + 1, neither 1 nor p - 1 is a singleton (2 is a qr), and so there are
8§ + 7 + 1 plus ones in the summation in Lemma 5 (the "1" is for the case @ = p). As in Lemma 2,
there are (p - 3)/2 plus ones in the summation in Lemma 5 [also (p - 1)/2 minus ones and one
zero]. Therefore, s+ 7 4+ 1 = (p - 3)/2 and since s = Z + 2 [part (3) of Theorem 3],
s =(p-1)/4.

If p=8k+ 5, then 1 and p - 1 are singletons not included in Lemma 5; thus, there are
(s = 2) +7+ 1 plus ones. Then, (s ~2) +72+ 1= (p - 3)/2 and s = 7 + 2 yield
s = (p + 3)/4.

It should be noted that Lemma 5 might have been used to prove all cases in Theorem 5.
Lemma 4 was used for the two cases to which it applied because it was so easy to apply and the
result in Lemma 4 was itself interesting.
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