We would like to find a criterion involving characteristic numbers which would enable
us to determine if two sequences belong to the same family or not. We conclude with conjec-
tures in this direction:

Conjecture 1: Ds = Dp =S5 «+ T
Conjecture 2: S+>T <=>D;D; is an -factor times a rational square. It would also be
desirable to have an algorithm to produce the derivation given the Y-factor.

Conjectune 3: p is a Brousseau number => each of the powers of p corresponds to a distinct
family of sequences.
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AN ESTIMATE FOR THE LENGTH OF A FINITE JACOBI ALGORITHM

F. SCHWEIGER
Institute for Mathematics
University of Salzburg, Salzburg, Austria

There are many papers concerning the length of the continued fraction expansion of a
rational number (see, e.g., M. Mendés-France [2]). Following a method given by J. D. Dixon
[1] in an elementary way, an estimate can be given for the length of the Jacobi algorithm of
a rational point.

The Jacobi algorithm may be described in the following way: Let

B={zx=(z,, ..., z)|0<z; <1, 1< <n}
Ifx= (0, ..., 0), then Tx =x. If x;, =+ =2, =0, x,,,>0 for 0 <t <n, then,
T, «oes 0, &, 15 ceesZn) = (0, ovu, 0, 2y o/x, 0 = [Xpya/Tpgq)s ooy Mxpyy - [1/z, 1)
We define z(9) = T9. We say that the algorithm of x has length L(x) = G if
G =min{g > 0 z¢) = (0, ..., 0)}.

Let x(®) = (0, ..., O, méii, cees 288)), then we define
kga+1)= vee = két;1)= 0

k#*D=1 (if ¢ = 0, then k**V = 1)
K= [=f8/x{0, o, kY = (172880

“t+l t+2 t+1l t+1
Af7) =8, for 0<di, j<n
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A"V 0 for 14 <m, 4V

1

1

1
(0+n+ ) EA(3+J)k(n , 0 < 5} < n.

Then, an easy induction shows

n
(e+n+1) (8+7) _(s8)
A; + E A; 5
j=1

n
(s+n+1) Z (s+4) _(8)
A, + A, z;
J=1

for 1 <7 <n.
We want to prove the following

Theorem: Let x = (a,/b, ..., a,/b) € B be a rational point. Then
(1) Let 8 > 1 and 6" + 1 = 8™*!, then L(z) < (log 0) 'log b.

(2) Let 0 < o < 1. Then there is an n = n(oc) > 0 with the following property: Denote by
N(z) the number of rational points x satisfying b < z such that L(x) < n log b, then
N(z) = 0(zn*9).

Remank: Since the order of magnitude of the number of rational points satisfying b < z is
zn+1l the result (2) states that in some sense almost all rational points satisfy
L(x) > n log b.

We first need a lemma, well known for the Jacobi algorithm without "Storungen" (that
means :z:l') # 0 for all g; see O. Perron [3]).

Lemma: For a >0,
(a+n)
n

., A s A(()a-fn)

) =
Proo This is clear for ¢ = 0. Therefore, we put a = g+ 1 > 1. Suppose that
—z—){ = k9 =0, k{¥ =1 and k(%Y —----k(" D =0, k(-1 =1, where 0 < 5 < t.
Tflen the following relations hold (0 < 7 < n):
Aianul)___ A§9+n)k£9) 4 e +A(9+=+1);<£9) + Aff”)

(Agaﬁ-n) , A(a+n) ,

(g+¢n) _ ,(g9=-1+n), (g-1) . (g+8) 1,(9-1) (g+8-1)
A; =4, Ky + e+ 4 ks+1 + A
We introduce the matrices:
M; with rows (A§g+j), cees A,(f”') s A‘(,g+'j)), s < J < m

My, with rows (Aggﬂ*h), ey Af,g+l+h), Aég””’)), t <h < n;

M;il with rows (A§g+h) s e A(,‘g*"h) , Agg*")), t<h<n.
Then Mg has rank n + 1 - s, and M,,; and N’il both have rank n + 1 - t.

Let d = (4(g+"+1) cee, AlEFTED) A(g*'"”)) denote the greatest common divisor. Then 4
divides all (n +1 - %) x (n+ 1 - 1t) determlnants of My,, and therefore of Mg+1 as well.

Now the Laplacian expansion for determinants shows that d is a divisor of all
(n+1-8) x (n+1 - s) determinants of the matrix My;. Repeating the argument, we finally

see that d divides determinants of ¥,, but [det M| = 1.

Proof of the Theohem: 1If L(x) = G, then a;/b = AS;G*"“)/A(OGM”) for 1 < 7 < n. Therefore

b= dGAf)G”‘“). From this, we first obtain

b >4,

(G+n+1) G

B
and

log b > G log 6.
The number of rational points satisfying b < z is smaller ‘than or equal to the number of
allowed algorithms (see O. Perron [3] or F. Schweiger [4]) such that dGAgG*"”)S 2.
+n+l)> kr(ls)

k,(,a) and given kf‘g) there are at most
(k(g) + l)n-l < 2n-l(k'(lg) )n-l

poss%b]).e values for the digits k(g) , 1 <j<n -1, we have the estimate (we write 9, instead
of ki7)):

Since 4 és
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where 8 > n will be chosen. This shows

N(Z) = 0]z Z z(n-l)Gi -‘.i i (q] . qado)ﬂ-l-!

— -

Gin logz q,=1 q;=1 qc-l
n-1 G+1 n-1 n log z (
= 0lz® :E: (2"t + 1 - nY) = 0lze(2" g(s + 1 - m)) " 8 ).
GZN log 2z

We put 8§ = n + £ and obtain N(z) = 0(2°) where
a=n+¢c+n(log (1 +€)+ (n- 1)log 2).
Choosing € > 0 and n = n(g), we may obtain

€ + nllog (1 +€) + (n - 1)log 2] < O.
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SOLUTION OF THE RECURRENT EQUATION u,,, = 2u, = u,_, + u,_; -

JACQUES TROUE
Collége Bois-de-Boulogne, Montréal, Canada

To find the general term of the sequence {u,}, we introduce an auxiliary sequence {v,},
intertwined with {x,} in the following way:
u%><:u%>2:u3 cew Upy Up F Upgq vee
I P R N T

where

Z"n+1 = vn-l + un’
(D

Un+1 = un-l + Vn

It is clear that both sequences are determined as soon as Uy Uy (= U, - u2), and Uys Uy
(= u, - u,) are given. {u,} solves our problem since

Upsel = Upo1 F Uy = Upoz F Vpo Uy = Upog + (Un = Upyy) + Uy
1. Adding the equations in (1) memberwise, we obtain:
Upsa + Uns1 = (un-l + Un-l) + (un + vn)!
which implies that {u, + v,} is a Fibonaceci sequence {F,} whose first two terms are
u, +vy (Fuy -u, +uy) and u, +v, (=u, -u; +u,).

2. Our problem would be completely solved if we would have an expression for u, - v, = €,.
Subtracting the equations in (1) memberwise, we obtain:

Enel En = Ep-1>

= (€,.1 - €,.2) - €,., (replacing n by n - 1 above),
- _En-Z:
= -(-g,.5) (replacing n by n - 3 above),

€pose
18



