Theofem: The probability that n tosses of a fair coin will contain a run of at least r con-

secutive heads, r < n, is given by 1 - Fﬁfi/Z".

Proof: Apply Lemma 3 to (4) withm=n - r + 1.
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COMBINATORIAL IDENTITIES DERIVED FROM UNITS

SUSAN C. SEEDER
Grinnell College, Grinnell, IA 50112
ABSTRACT
We shall derive two combinatorial identities by considering units in infinite classes of
cubic fields. This is a comparatively new application of units.
0. INTRODUCTION
We shall begin by stating a result of Bernstein and Hasse [2] concerning systems of units
in infinitely many fields.
Theorem: Let P(x) be a polynomial of degree n > 2 with the form
P(z) = (x -Dy)(x=-Dy) v.. (®x-D,_y) -d,d>1,D,,de 2, Dy =D; (mod d),
Dy -D;, >2dn-1), (=1, ..., nm=1), Dy >D;, > ... >D,_,.
Then P(x) has exactly »n distinct real roots; P(x) is irreducible over @; and if w is the
largest root of P(x), then

w - D,;)"
e; = —F (=0, ..., n=1)

are different units of Q(w). Furthermore, any n - 1 of these units form a system of inde-
pendent units.

1. COMBINATORIAL IDENTITIES FROM UNITS

Consider the cubic polynomials P(x) = (x - Dy)(x - D,)(x - D,) - 1; D; as above. First
we work with the case D, = 0; later we will eliminate this condition. Now it is clear that
itself is a unit in QW) with N(w) = 1. We proceed by expressing the integral powers of w.
For any integer n > 0, let

(1.1) W = Ty o+ Y0 + Z,w° (%) sYn »3n € 2).
Calculating directly and taking into account that w? =1 - Bw + Aw? where 4 = D, + D, and
B = DyD,, we have

whtl = 2, + (Tn - Bzn)w + (Yn + Azn)007

(1.2 wh*? = (y, + Ax,) + (s, - By, - ABz,)w + (x, - Bz, + Ay, + A%z,)v%;
so that

(1.3) Tpil = 3,3 Yuy1 = Tn ~ BTyi15 Zpyy = Tpoy - Br, + Ax, .

From (1.1) and (1.3), we obtain

(1.4) wh =z, + (@, - Bx,)w + (x,_, - Br,_; + Ax,)w?
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along with the recursion formula
(1.5) Tpsy = Ty — Brpyy + Az, 3 n > 0.

Now in order to write x, explicitly, we shall make use of generating functions together with
(1.5) to obtain

(1.6) Do mut = (1 - Au+ Bu®) Y (A4 - Bu + ud)'un.
n=0 n=0

It should be noted that for the sake of convergence, u can be chosen such that
|Au - Bu? + u®| < 1. Equating coefficients in (1.6),

n-17-1 n-2i+8_7-28
1.7 ;l};(”( 2+ L - 20 2-1)‘4 B
In the same manner we calculate the negative powers of w.
(1.8) w" =, + 8w + tw, (el r,,s,,t, €2)
(1.9 wt=r, + (P,_, - Ar,_)w + 1, v’ wherer ., =1, -Ar,, , +Br,_,.

As before, we apply generating functions to obtain

Z ru’ = Z(B - Au + uH"u".
n=0 n=0
Comparing coefficients of equal powers of u gives us the relation

n -1

(1.10) Z PG (n St i-28 Q')Ai-uBn-z«;u.

1=0 g=0

We return to formulas (1.1) and (1.8) and multiply right and left sides together to
obtain, after some rearrangements, the following three equations with r,, s,, %, as unknowns:

1 =ux,r, + 2,5, + (y, + 42,)%,;
0=y,r, + (xy - Ban)s, + (-By, + 3, - AB3,)tn;
0 = z,r, + (y, + 42,8, + (x, + Ay, - Bz, + A%z,)t,.

The determinant of the system is equal to the norm of w” as can be seen from (1.1) and (1.2).
But N(w) = 1. Therefore, we have

n = Bap -By, + 2, - ABz,

(1.11) r, = .

Y, + Az, x, + Ay, - Bz, + A2z,
From (1.2), (1.5), and (1.11),

Tnes = ATpys Tpsu = AZpys

r, = .

Tn 42 Ln+s

(1.12) T, =Xl - Ty oTaes

We have at last reached our first combinatorial identity by considering (1.12) in conjunction
with (1.7) and (1.10), which express the x, and the r, as combinatorial fumctions.
If we now consider Z, as an unknown and solve the original system of equations, the

determinant of the system becomes -N(w™") = -1; so that
r, - Btn -Bs, + tn - 4Btn
xn=— .
s, + Aty r, + As, - Bt, + Ait,
Substituting for s, and t» in terms of r, from (1.9) and recalling that r,, , = r,_, - Ar,_, +
Br,, we obtain our second combinatorial identity
(1.13) Ty =0l =Ty, (n > 5).

Note that no generality was lost by assuming D, = 0, since by settingw - D, = w and
working with the equation

w? + (2D, -~ Dy - D)B? + (D, - D) (D, - DD - 1 =0,
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we would obtain the same identities with 4 and B replaced by 4 = -2D, + D + D, and
B = (D, - Dy)(D, - Dy), respectively.
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A STOLARSKY ARRAY OF WYTHOFF PAIRS

DAVID R. MORRISON
Harvard University, Cambridge, MA 02138

A positive Fibonacei sequence is a sequence {si} such that sy4+; = Sx + 8x.; and s, > 0 for
k sufficiently large. A Stolarsky array is an array 4 = {4,,,:m,n 0} of natural numbers such
that:
(a) the rows {An,;, Ap,,5 ...} are positive Fibonacci sequences;
(b) every natural number occurs exactly once in the array;
(c) every positive Fibonacci sequence is a row of the array, after a shift of indices.
That is, given a positive Fibonacci sequence {s;}, there exist m and kX such that

Am'n = Sn+k-

The first such array1 was constructed by Stolarsky [8]. In this note, we will construct
a new Stolarsky array using Wythoff pairs. By inspecting the tables of these two arrays, it is
easy to obtain more Stolarsky arrays. (For example, in either table, the 4 may be shifted from
the second to the third row.) It would be interesting to have a classification of the Stolarsky

arrays.
Let o = 3(1 + V/5) be the golden ratio, and let [ ] denote the greatest integer functionm.

The Wythoff pairs are the pairs of numbers ([na], [#na?]) which give the winning positions in
Wythoff's game (see [5], for example). These pairs have two remarkable properties:

1. Beatty complementarity [2]—Every natural number m is either of the form [na] or of
the form [#na?], but not both.

2. Commell's formula [4]1—
[na] + [na?] = [[no?]al.
Lemma 1: Let s; = [kal, s, = [ko?] generate a positive Fibonacci sequence. Then (szj_l, szj)
is a Wythoff pair for every j > O.
Proof: Since a? = a + 1, we have
(*) n+ [na] = [na?].
Suppose (325-3’ szj_2)= (Ima], [ma2]) is a Wythoff pair. Then by Connell's formula,
8,;., = [ma] + [m?] = [[ma?]al,
while by formula (%), _

§,. = [ma?] + [[ma?]a] = [[ma?]a?].

J
Thus, (8;.1, 8;) 1s a Wythoff pair, and the lemma follows by induction.

We define the Wythoff array to be an array W = {W,,,} which is Fibonacci in its rows, and

is generated by:
W

The first 100 terms of the Wythoff array are listed in Table 1.

m1 = [Imlal, W, = [ [ma]a?].

'That (c) holds for Stolarsky's array does not seem to have been noticed. We will verify
it as Corollary 2, below.
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