By substituting A = sz/Z in the above matrix R, we obtain

1 I}Zn+2)k F

R, =—
2% T F .
2k \ =F ~F(an- 2)k

2nk

Also, substituting A = sz/2 into up+1(A) = 2Au,(A) - u,_,(A) yields the expression for the
general element in the upper left of R;k as given in equation (25).
Since we could also show that

[n/2] ” ;
Frs1@oxsq) = 2: ( g )L;£fi

Jj=0

by substituting A = L,, , into the recursion formula for the Fibonacci polynomials, and since
also f,, 1T, 1) = Foxa1yn+1)/Faxs1» We can generalize equation (25) to the following:

[n/2] .
. n - - .
F(n+1)p/Fp = 2 (-1).7(p+1)( p J)L’; 25 p #0,

j=0
which was a problem posed by H. H. Fern [4].
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ANTIMAGIC PENTAGRAMS WITH LINE SUMS IN ARITHMETIC PROGRESSION, A =3

CHARLES W. TRIGG
2404 Loring Street, San Diego, CA 92109

A pentagram or five-pointed star can be formed by extending the sides of a regular
pentagon until they meet. - This figure consists of five equal line segments that form a
closed path. Each line intersects every other line, so that there are four intersections
or vertices on each line, and two lines at each vertex.

A magic pentagram is formed by distributing ten elements on the vertices of a pentagram
in such a way that the sum of the four elements (quartet) on one line equals each of the
other four line sums. It has been shown [l1, 2, 3, 4, 5] that no magic pentagram can be
formed with the first ten positive integers.

An antimagic pentagram is ome with five different line sums. Those formable with the
first ten positive integers are formidably numerous. We restrict our search to those with
five line sums in arithmetic progression and a common difference, A = 3. 1In the sum of the

five line sums, each element appears twice, so 5[2a + 4(3)]/2 = 2(55). Hence, the progression

must be 16, 19, 22, 25, and 28.

The partitions of the five terms of this progression into four elements each < 11 are
exhibited in Table 1. To make the table compact, 10 is recorded as X. Designate any quartet
with a sum of x as an x-quartet. For the purposes of this discussion, two integers are said
to be complementary if their sum is 11. Two quartets are complementary and two pentagrams
are complementary if their corresponding elements are complementary.

To construct an antimagic pentagram, we start with the l6-quartet (1, 2, X) and seek
a 19-quartet with which it has exactly one element in common, such as (3 7, 4 5) A 22-
quartet with exactly one element in common with each of these is (2, 5, 6 9) A 25-quartet
with exactly one element in common with each of these three quartets is (1, 7 8, 9). The
unduplicated elements, which are not underscored, in these four quartets form the 28—quartet
(4, 6, 8, X). These five quartets can be distributed on the vertices of a pentagram with
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their line sums intact, as in Figure 1. Proceeding in this fashion to exhaust Table 1, we
find 94 distributions exist in complementary pairs as, for example, in Figures 1 and 2.

TABLE 1
PARTITIONS OF LINE SUMS, A = 3

16 19 22 25 28
123X 126X 129X 159X 189X
12409 1279 138X 168X 279X
1258 135X 147X 1789 369X
1267 13609 1489 249X 378X
1348 1378 156X 258X 459X
1357 1459 1579 267X 46 8X
1456 1468 1678 2689 47 89
2347 1567 237X 348X 56 7 X
2356 2 34X 2389 357X 56 89

2359 2 46X 3589
2368 2479 3679
2458 25609 456X
2467 2578 4579
3457 345X 4678
34609
3478
3568
4567
3 8 d
9 1 7 8 2 X 4 3 k c e m
2 A 9 7 b b
6 5 h
X 5 1 6 a g

FIGURE 1 FIGURE 2 FIGURE 3

One of each complementary pair is listed in Table 2. To facilitate ready construction
of any antimagic pentagram from its tabular entry, the vertices have been lettered continu-
ously as in Figure 3. The l6-quartet (a, b, ¢, d) and the 19-quartet (d, e, f, g) are imme-
diately evident in the table, while the 22-quartet (g, %, b, k), the 25-quartet (k, ¢, e, m),
and the 28-quartet (m, f, h, a) are easily identified. The pentagrams are listed in the
order of the appearance of the l6-quartets in Table 1. The asterisks (*) designate the dis-
tributions wherein the consecutive digits 2, 3, 4, 5, 6 appear in some order on the vertices
of the constituent pentagon.

The distribution of the elements as recorded in Table 2 was made so that in progressing
clockwise about the five-line closed path of the pentagram, the line sums would be in increas-
ing order of magnitude. '"Essentially, a particular element can appear only in one of two
positions—a starpoint or a pentagon vertex. For any quartet, if one element is positioned,
the other members can be permuted into 3! orders. Thus any quartet can appear on its line in
exactly 2(3!) or 12 orders, not counting reflections. It follows from the tightly interwoven
relationship of the quartets that every basic pattern on the pentagram can appear in 12 dif-
ferent guises, all having the same five quartets" [6].

The family of 12 antimagic pentagrams to which the first pentagram in Table 2 belongs is
given in Table 3, with 2 in the restricted positions. The 16-, 19-, 22-, 25-, and 28-quartets
may be represented by 4, B, C, D, and E, respectively. The clockwise and counterclockwise
orders of the quartets along each pentagram's closed path are shown in Table 3. The orders
in the family comprise all the cyclic permutations of the five quartets.

125



TABLE 2
ANTIMAGIC PENTAGRAMS WITH LINE SUMS IN A. P., A = 3
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LOUOARARTTVOVAVNWLWOARANMLAXUULUEROSO D hn
VOO vWwWwwovwNWNWLWNYNULESEYNP,O UL W «Q
NPAEPEIDSE XN NWORAXDNPEOAULOON WO
XA P I NI 00 X0 WS 0000 W00 ~W OO
HMKNIXXXEXAXAXAXOANNO OO
FPANYNYNUVNOOINIINTNAON N 00 0O 0O O
HE U NRFR B OO SNPNDNDNDE LU NN
AUV HUWLWLWWLWWHREFFOORN NI RNNNDOVUL WL
VO WLWWLWHENFEFEDEPNNNDNE RSN e e
NWXAXPEXYIYXUUuuUuXUnuuns oo woR
WALV~ ODOLULXEEUVWOYO WY
LN NMNNNNMNNOLWRPFPLOVLLOLLOAWLWLOW
00 O WO WO W\WWO WO LWOO00 O 0000 MO0~ XX
HXKXXOAXPEXUIXXUNWOXEOWWOXE XX
NNOPOOUUNUNOXPEXWOUSEXXOXIESSS

TABLE 3
ANTIMAGIC PENTAGRAM FAMILY WITH COMMON LINE ELEMENTS

Sequences of Sums

a b e de fgh km Clockwise Counterclockwise
X 2 1 3 7 4 5 6 9 8 ABCDE AEDCB
X 2 3 1 7 8 9 6 5 4 ADCBE AEBCD
32 X 1 8 7 9 5 6 4 ADCEB ABECD
3 21 X 8 4 6 5 9 7 AECDB ABDCE
1 2 3 X 4 86 9 5 7 AECBD ADBCE
1 2 X 3 4 7 5 9 6 8 ABCED ADECB
2 3 X 1 8 9 7 5 4 6 ADBEC ACEBD
2 31 X 8 6 4 5 7 9 AEBDC ACDBE
2 X 317 9 8 6 4 5 ADEBC ACBED
2 X 1 37 5 4 6 8 9 ABEDC ACDEB
21 3 X 4 6 8 9 7 5 AEDBC : - ACBDFE
2 1 X 3 4 5 7 9 8 6 ABDEC ACEDB

It is not customary to count rotations and reflections of configurations as separate
arrangements. With this qualification, there are 2(47)(12) or 1128 distinct antimagic pen-
tagrams with line sums forming an arithmetic progression that has a common difference of 3.

There are other antimagic pentagrams with line sums in arithmetic progressiong having
common differences of 1 [7], 2 [8], and 4 [9].
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TWO FAMILIES OF TWELFTH-ORDER MAGIC SQUARES

CHARLES W. TRIGG
2404 Loring Street, San Diego, CA 92109

A family of 24,769,797,950,537,728 twelfth-order magic squares can be generated from the
basic 9-digit third-order magic square (1) of Figure 1 and the 880 basic fourth-order magic
squares.

First, add 9 to each element of square (1) to form square (2) in Figure 1, and repeat
the operation until the fifteen derived squares of Figure 1 have been formed. Each of these
squares is magic and remains magic in eight orientations: the square itself, its rotatioms
through 90°, 180°, and 270°, and the mirror images of these four.

(1) (2) (3) (4)
8 1 6 17 10 15 26 19 24 35 28 33
3 5 7 12 14 16 21 23 25 30 32 34
4 9 2 13 18 11 22 27 20 31 36 29
(5) (6) (7) (8)
44 37 42 53 46 51 62 55 60 71 64 69
39 41 43 48 50 52 57 59 61 66 68 70
40 45 38 49 54 47 58 63 56 62 72 65
(9) (10) (11) (12)
80 73 78 89 82 87 98 91 96 107 100 105
75 77 79 84 86 88 93 95 97 102 104 106
76 81 74 85 90 83 9 99 92 103 108 101
(13) (14) (15) (16)
116 109 114 125 118 123 134 127 132 143 136 141
111 113 115 120 122 124 129 131 133 138 140 142
112 117 110 121 126 119 130 135 128 139 144 137

FIGURE 1. Sixteen 3-by-3 Magic Sgquares

To construct twelfth-order magic squares,.divide a 12-by-12 grid into sixteen 3-by-3
grids, thus forming a 4-by-4 grid of grids. Label this 4-by-4 grid with the elements of one
of the basic fourth-order magic squares, such as the familiar pandiagonal square:
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