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where 8 > n will be chosen. This shows

N(Z) = 0]z Z z(n-l)Gi -‘.i i (q] . qado)ﬂ-l-!
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Gin logz q,=1 q;=1 qc-l
n-1 G+1 n-1 n log z (
= 0lz® :E: (2"t + 1 - nY) = 0lze(2" g(s + 1 - m)) " 8 ).
GZN log 2z

We put 8§ = n + £ and obtain N(z) = 0(2°) where
a=n+¢c+n(log (1 +€)+ (n- 1)log 2).
Choosing € > 0 and n = n(g), we may obtain

€ + nllog (1 +€) + (n - 1)log 2] < O.
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SOLUTION OF THE RECURRENT EQUATION u,,, = 2u, = u,_, + u,_; -

JACQUES TROUE
Collége Bois-de-Boulogne, Montréal, Canada

To find the general term of the sequence {u,}, we introduce an auxiliary sequence {v,},
intertwined with {x,} in the following way:
u%><:u%>2:u3 cew Upy Up F Upgq vee
I P R N T

where

Z"n+1 = vn-l + un’
(D

Un+1 = un-l + Vn

It is clear that both sequences are determined as soon as Uy Uy (= U, - u2), and Uys Uy
(= u, - u,) are given. {u,} solves our problem since

Upsel = Upo1 F Uy = Upoz F Vpo Uy = Upog + (Un = Upyy) + Uy
1. Adding the equations in (1) memberwise, we obtain:
Upsa + Uns1 = (un-l + Un-l) + (un + vn)!
which implies that {u, + v,} is a Fibonaceci sequence {F,} whose first two terms are
u, +vy (Fuy -u, +uy) and u, +v, (=u, -u; +u,).

2. Our problem would be completely solved if we would have an expression for u, - v, = €,.
Subtracting the equations in (1) memberwise, we obtain:

Enel En = Ep-1>

= (€,.1 - €,.2) - €,., (replacing n by n - 1 above),
- _En-Z:
= -(-g,.5) (replacing n by n - 3 above),

€pose
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Thus, {ea} is a periodic sequence, with period 6 and
€y =uUy =V U tU, Uy, By U, ~V, TU, U - U, E;, =E, ~E
E, = =€, € = -€,, € = -€,.

3. Hence
Uy + vy = F,

Up = Vp = €, = €[, (where [n] = n modulo 6),
and

u, = 3(F, + €(n)) (n > 4).

Now F, may be written in the form (using the Binet formula):

F, = (u1 -u, + us)N;_z + (u2 -u, + u“)Nn_l,

where N, 1s the integer closest to
_1_(1+/§>"
V5 2

(see, for instance, N. N. Vorob'ev, Fibonacei Nwmbers, Blaisdell Publishing Company, 1961,
page 22).

Remarks: 1. The method used makes obvious the following relations:
Up + Upys = 3(Fy + Fry3) = Fryg,
Unso = Up = 3(Fnsg = Fn) = 25,5, oot .

2. Any sequence {€,} and any Fibonacci sequence are solutions of the given
recurrent equation (directly or by our formula).
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PRIMENESS FOR THE GAUSSIAN INTEGERS

RICHARD C. WEIMER
Frostburg State College, Frostburg, Maryland

Complex numbers of the form a + b7, where a and b are integers, are commonly called
Gaussian Integers. It can be shown that the Gaussian Integers, denoted by &, along with
addition and multiplication of complex numbers, form an integral domain. One might suspect
that many properties about the integers, denoted by Z, carry over to G. This is indeed the
case, and it is the purpose of this paper to examine the property of primeness in the Gaus-
sian domain. The Fundamental Theorem of Arithmetic states that every integer is either a
prime or can be uniquely factored into a product of primes, apart from the order in which
the factors appear. This theorem also holds for G. It is also true that both G and Z are
unique factorization domains. For Z, the units are 1 and -1, while the units for G are 1,
-1, 2, and -Z. The job at hand, then, is to determine what elements of G are prime.

For each o € G, a * O, where o is the conjugate of a, is called the norm of a and is
denoted by N(a). Thus for a,b € Z, N(a + bi) = (a + bi)(a - bi) = a®* + b?. It also follows
that for a,B € G, N(a * B) = N(a) * N(B).

Since G is a unique factorization domain, any o € G can be factored into a product of
primes. Therefore, suppose o = p, - * «.. * p , where the p:'s (=1, 2, ..., n) are
prime in G. We thus have N(a) = N(p,) * N(p,) » ... « N(p,). Hence, any factorization of
o € G leads to a corresponding factorization of N(a) in Z. As a result, o is prime in G if
N(a) is prime in Z. As an illustration of these results, consider o = 3 + 7¢. Since
N(a) = 9 + 49 = 58 =2 « 29, 3 + 7{ has at most two prime factors having norms 2 and 29.
Those elements of G with norm 2 are 1 = 7. Selecting 1 + 7 and solving the equation
(3+7¢) = (L +Z)(x + Zy) for x and y, one discovers that (3 + 72) = (1 +.2)(5 + 2Z2). 1If
1 - 7 were chosen, 3+ 72 = (1 - ©)(-2 + 57). This appears at first glance to be a differ-
ent factorization, but observe that (3 + 72) = -2(1 - 7)(5 + 27) where -7 is a unit. Note
also that N(5 + 27) = 29. Hence, (1 + 7)(5 + 2¢) is a prime factorization of 3 + 77.

We now have a procedure for determining whether a Gaussian integer of the form a + b7,
a,b # 0, is prime in G. What remains is to find a method for determining whether or not
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