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RECONSIDERING A PROBLEM OF M. WARD

. JAN VAN LEEUWEN
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ABSTRACT

In a recent issue of The Fibonacci Quarterly, Laxton proved a conjecture of Ward to the
effect that integral linear recurrences which are not degenerate in a certain sense neces-
sarily contain infinitely many distinct prime divisors. We point out that the result is an
immediate corollary to an early theorem of Pélya published in 1921, and derive Ward's con-
jecture for a more general class of integral linear recurrences.

1. INTRODUCTION

Ward [6, 7] showed that nondegenerate integral linear recurrences of order 2 and 3
always contain infinitely many distinct prime divisors. Recently, Laxton [3] proved Ward's
conjecture that a similar result must hold for recurrences of arbitrary higher order
(again excluding some degenerated cases).

Let
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(with a, # 0, m>0, n >0) be an mth order integral linear recurrence and let
P,(x) = x" - q

m~-1 -
m - 1% a,

be the associated characteristic (or spectral) polynomial.
Here is what was proved.

Theorem: Let {w,} be an integral linear recurrence of order m > 1. If all roots of B, (x)

" are distinct and if no ratio of distinct roots is a root of unity, then {w,} has infinitely

many distinct prime divisors.

It turns out that the answer already did exist before the question. The very same
result (and thereby the solution to Ward's conjecture) is an almost immediate corollary to
a theorem of Pélya [5, Satz II'] dating back to 1921, which seems to have escaped attention.

We shall indicate how the theorem can be applied and use it to derive a stronger solu-
tion of Ward's problem.

2. POLYA'S THEOREM

We shall have to assume that the reader is familiar with some algebraic number theory
(see Landau [2] or Pollard [4] for an excellent introduction).
First we observe

Lemma: Let K be an algebraic number field, D a nonzero algebraic integer in X, and {w,} a
sequence of rational integers. {w,} has infinitely many prime divisors if and only if {Dw,}
has infinitely many prime-ideal divisors.

We now combine Pélya's Satz III' [5, p. 15] and Satz II' [5, p. 17] to obtain

Theorem: Let Qs +.+ Op and all coefficients of the nontrivial polynomials
P,(x), ..., P.(x) be algebraic integers. Let D # 0 be an algebraic integer such that
F(x) = l-(P (x)af + -++ + P, (x)ak)
D\'1 1 r r

has rational integer values for x 0, 1, 2,

Assume that » + min deg P (x) < 2. If no ratio of distinct a's is a root of unity, then
F(x) has infinitely many prime-divisors.

P6lya showed the theorem for D = 1 (or any rational integer for that matter) but only
slight modifications in the proof make it true for arbitrary algebraic integers.

For consider G(x) = D + F(x) and carry out the same proof. By the lemma, it follows
that assuming that F(x) only has finitely many prime-divisors (by way of contradiction, as
P6lya does) is equivalent to assuming that G(x) only has finitely many prime-ideal divisors.
Where P6lya considers absolute values, one should use norms; where Pélya proceeds with
analytic arguments related to the series LF(n)z", one can do exactly the same for G after
factoring out D.

The theorem enables us to prove Ward's conjecture with the condition that all roots need
to be distinct omitted!

Here is what we get.
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Theorem: Let {w,} be an integral linear recurrence of order m > 2. If no ratio of distinct
roots of P,(x) is a root of unity, then {w,} has infinitely many distinct prime divisors.

Here is how to prove it. Consider the recurrence .equation for w,. Following Gel'fond
[1] (or other books on difference equations), the general solution can be expressed as

w, = %(Pl(x)af + «++ + P, (x)aZ)

where &;, ..., @, are the roots of P,(x), P;(x) a polynomial of degree equal to the multi-
plicity of w; minus 1 and with algebraic integer coefficients, and D a nonzero determinant
of algebraic integers (hence an algebraic integer as well). It easily follows that the con-
ditions for Pélya's theorem are satisfied and {w,} must have infinitely many distinct prime
divisors.
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WHAT A DIFFERENCE A DIFFERENCE MAKES!
JERRY T. SULLIVAN

Two men are leaving the office when one remarks that both his wife and boy are cele-
brating their birthdays that night. The other wonders if it is his youngest son. 'Yes,"
says the first, "but he's not so little anymore. His age, multiplied by my wife's age, is
equal to the square of the difference of their ages plus one year." This problem, similar
to an earlier one in The Fibonaceci Quarterly [1], provides some surprising and amusing
mathematical twists.

On the premise that many mothers are between 25 and 35 years of age, and also that a
typical boy is about 10 years old, pairs of ages such as 10 and 30, 11 and 35, etc., can be
tested. After a few trials, an answer is seen to be 13 and 34. Further thought shows that
the problem can be handled algebraically. If the age of the wife is W and that of the boy
is B, then

(1) WB = (W-B)? + 1.
The wife's age can be solved as a function of the boy's age:
(2) W= [3B % (5B® - 4)*]/2.

Substituting B = 13 into equation (2) and using the positive square root gives the known
answer W = 34. However, using the negative square root gives the answer W = 5. It is an

unusual wife who is younger than her son, but the numbers 13 and 5 also satisfy equation (1).

Using the number 5 in equation (2) and choosing the negative root gives the numbers 5 and 2
as another solution. Proceeding in this fashion results in the sequence

(3) 1, 2, 5, 13, 34, 89, ...,

where each successive pair of numbers satisfies equation (1). The number 1 has the unusual

property of giving the solutions 1 and 2 when substituted into equation (2). It does not give

a solution lower than itself.

The above sequence is every other number of the usual Fibonaccl sequence. Calling the
initial age in the sequence A, the next 4,, etc., equation (1) may be rewritten as a
difference equation,

(4) Ayarfy = Uyyy - A% + 1
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