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CONDITIONS FOR ¢(N) TO PROPERLY DIVIDE N -1

DAVID W. WALL
University of New Mexico, Albuguerque, NM 87106

This paper is concerned with limitations upon solutions in integers k > 1 and n > 0 to
the equation

(1) ko(n) = n - 1,

where ¢ is the Euler phi-function. The question of whether or not (1) has a solution was
first raised by Lehmer [1] and, more recently, was proposed as an "elementary problem'" by
Marshall [4] and as a research problem by Alter [5].
' Here we review some previous results (Theorems A and B below) and then derive additional
limitations (Theorems 1-4) on possible solutions (k,7n) to (1).

In all that follows, we assume that 7 is a composite positive integer for which
k¢(n) = (n - 1), k integral and at least 2. We represent n as the product p,p,p; ... p, of r
positive primes. It is occasionally convenient to express n as (t; + 1)(¢, + 1) ... (£, + 1),
where t; + 1 =p; for 1 <7 < r.

We begin with a few basic results which have appeared previously in various places.

Theonem A:

(i) 1If n satisfies (1), then n is odd, square-free, and the product of at least three
primes.
(i1) 1If n satisfies (1) and p is a prime in n, then 7 has no prime of the form pz + 1
where x is a poiitive integer.

Part (i) was first demonstrated by Lehmer [1]; part (ii) by Schuh [2]. Both are fairly
direct consequences of the formula

o =ef -z ) e b o5

where m = (q;')(q;*) ... (gfr) is the representation of m as the product of powers of dis-
tinct primes.
Indeed, from this formula we see that if »n satisfies (1), then

¢(n) =pyp, «.. p, (1 - 1/p)( - 1/p,) ... (1 = 1/p,)
,-DPE,-1 ... p, - D

=18, o0 Ty
and that
) pp, P, - 1 (tl + 1)(7‘;2 +1) ... (t, +1) =1
T, - (@ - D t,t, ... t,

1 +Zl+22+ +ZP_1

where :E:. is the sum of the products of the inverses of the ¢; taken j at a time. This
J

immediately implies the following result, noted by Lieuwens [3].

Theorem A:
(iii) If in the index set {1, 2, ..., r} an inde# J exists such that q, < q! and 1f
q; £ q/ for all other indices z, then J 7
4,9, +++ G = 1 q.q, -+ q, -1
@ -D . @, -D (@-D .. @ -D°

Thus, increasing some or all of the primes in n acts to decrease (n - 1)/¢(n).

Lieuwens showed in addition that if the smallest prime factor of n is not 5 then 7 is
the product of at least 13 primes, and that if 3 is a factor of n then n is the product of
at least 213 primes. Watterberg [6] showed that if 5 is a factor of n then n is still the
product of at least 13 primes. We offer yet another addition to this set of results with
the following.
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Theorem 1: 1If n satisfies (1) and the smallest prime in » is at least 7, then n is the
product of at least 26 primes.

Proog: Since for a given number r of primes in %, increasing any one of the primes decreases
the value of (n - 1)/¢(n), it follows that we can bound this ratio above by making » the
product of the first r primes. A better bound is possible, however, since we know that 2 is
not in 7 and that both p and mp + 1 cannot be in 7 at the same time.

In seeking this upper bound, it is necessary to achieve a balance between these considera-
tions. For example, it should be better to use 7 in n instead of 29, because that will give
the higher ratio. But by including 7 in 7, we must exclude 43, 71, 113, 127, ... as well as
29. Thus, if we accept 7 as a factor of n, how many of the 7m + 1 can we exclude from n and
still be guaranteed an upper bound?

Now,

p,p, «-+ P, - 1 p. --. P, n

-

(n - 1)/¢(n) = G, -D .- @ -D G- DG -D

If we use this last ratio as an upper bound, one approach might be to calculate p/(p - 1)
along with the product of as many (mp + 1)/(mp) as we need to consider and simply see which
is larger. This lends itself to useful results in specific cases, but a more general approach
follows.

To begin with, we need only consider mp + 1 with m even, since we want mp + 1 to be an
odd prime. Since

(2p + 1)(p + 1)(6p + 1) (p - 1) = 48p" - 4p% - 32p% - 11p - 1
F p p

< 48p" since p > 0,

@p+1) Gp+1) (6p+1) (p+D@p+ P +1) P
2p 4p 6p 48p3 p-1
Hence, we get a higher value of n/¢p(n) by using p and omitting three mp + 1, regardless of the

values of p and the mp + 1.
Considering the next case,

384p° + 16p* - 260p° - 120p% - 19 - 1
< 384p° + 16p"* - 260p° - 120p*
384p° + 4p? (4p? - 65p - 30).
For positive p, 4p2 - 65p - 30 is negative if p is less than 16. Hence,
(2p + 1)(4p + 1)(6p + 1)(8p + 1) (p - 1) < 384p> if p < 16, or

(2p + Dlp + DN(p + DB + (P - 1)

2p+l4p+16p+18+1 _ _P
2p 4p 6p 8p p-1

if p < 16.

By the same reasoning as before, then, we can eliminate four mp + 1 when p is in n if p is 3,
5, 7, 11, or 13, and still be guaranteed an upper bound for (n - 1)/¢(n).

Applying this result for primes at least 7, we derive the sequence of 25 integers 7, 11,
13, 17, 19, 31, 37, 41, 47, 59, 61, 73, 97, 101, 107, 109, 127, 139, 151, 163, 167, 173, 179,
181, 193 which, when multiplied together to produce 7n, give

n 1683 931359 756224 971448 190042 001610 486666 623927

o(n) T 7842 103229 776040 364896 ;36617 728635 584000 000000 <2

But this ratio is an upper bound of (n - 1)/¢(n) for all n with fewer than 26 primes. Since
it is less than 2, n cannot satisfy (1) if it is the product of fewer than 26 primes. Hence,
if all prime factors of n are 7 or greater, n is the product of at least 26 primes.

We next look at an unrelated result which deals with the powers of two in ¢(n). Define
e(p) to be the largest j such that 2 divides p - 1. We have seen that all primes in 7 are
odd, and thus that all the t = p - 1 are even. Hence e(p) is at least 1 for all p in n. The
following interesting result then emerges.

Theorem 2: 1If n satisfies (1), then e(p) is minimal for an even number of primes p in =.

Proog: Llet n =p,p,p, ... p, and let m be the smallest value of e(p;) over 1 <7 < r.
Suppose without loss of generality that p, satisfies e(pl) =m. Since k¢(n) =n - 1,
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ke, -1 ... &, -1 =pp, .- p, -1
or
ktit, ooty = (t, +1) .0 (£, 4+ 1) -1

=yt eee bok Doty een by b oeee +D tit 4D b

Since m is the minimum e(p) and m is at least 1, any product of two or more t; is a multiple
of 2"*1, Thus, taking residuals modulo 2"*! in the preceding equation, we see

0Z0+0+ ... +0+) ¢t (md 2"*),

i.e.,

0

Dt;  (mod 2"*1).

Some terms in z:ti are themselves multiples of 2"*l—specifically, all those t; for which

e(p;) is at least m + 1. These terms also vanish modulo 2"*!, leaving only those t; for
which e(p;) = m. The sum of all such t; must thus be a multiple of 2"*1, Since each of
these ¢; are odd multiples of 2", there must be an even number of them to produce as a sum
a multiple of 2™*%,

Hence e(p) is minimal with a value of m for an even number of primes p in 7.

Lastly, we consider an extension of the technique involved in the following theorem of
Schuh.

Theorem B: 1If 3 divides n, then k is of the form 3x + 1.

Proog (§rom Schuh): Suppose n = 3p,p, ... p,. No prime p; is of the form 3z, since it is
then either 3 or not prime, and by Theorem A we see that in this case no prime in »n can be
of the form 3x + 1. Hence, all the p, must be of the form 3x + 2. Since k¢(n) =n -1,

k(2), - 1) ... (, = 1) = 3p,p; ... p, ~ L.
Taking residuals modulo 3 in this equation, we find that
(&)(2)(H)() ... (1) =0-1 (mod 3)

2k = -1 (mod 3)

and thus k = 1 (mod 3); i.e., k is of the form 3x + 1.

This result cannot be extended in the same form, as the limitation upon the form of the
p; becomes less specific as the known factor of n (in this case, 3) increases. However,
certain combinations of k% and the p; can be shown to be incompatible, and we can tabulate
the possible combinations, in the following manner:

If p is prime, then the set {1, 2, 3, ..., p - 1} is a group under multiplication
modulo p. In particular, every member of the set has an inverse in the set, and (since no
prime except p is divisible by p) all the other Pys Pgs +++s D, in n are congruent modulo p
to members of this set. Suppose then that p is a prime in n and that n = pp,p, ... Dy
Then we can associate those primes in »n which are inverses modulo p, and from this extract a
few results.

or

At this point it becomes clearer to consider specific cases. Suppose n = 5p2p3 cee Dy
Then the p. may be congruent to 2, 3, or 4 modulo 5. If %,, %3, %, are the number of primes
in 7 congruent to 2, 3, or 4, respectively, k¢(n) = n - 1 implies that

k(2 - 1)%(3 = 1)@ - 1)** = -1 (mod 5)
or

k(1% (2% (3%) = k(2% (3" = -1 (mod 5)
Now, 2 and 3 are inverses and of order 4 under multiplication modulo 5, so
(2% (3% = 2 (mod 5)

and this is congruent to 29 for some j = 0, 1, 2, or 3. Hence, we have the following.

Theorem 3: k(27) = -1 (modulo 5), where j is the number in {0, 1, 2, 3} that is congruent

modulo 4 to 2, - 7,.

This relation between j and k gives rise to Table 1.
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TABLE 1 .
r
Ty = Ty k
(mod 4) (mod 5) {
0 4 B
1 2
2 3 {
3 1

The next case, when 7 divides 7, is naturally a bit more complicated. Defining %,, Z,,
i“, is, is in the same manner as before, we obtain

k(1%) (2%) (3% (4%) (5%) = -1 (modulo 7).
Inverse pairs are 2, 4 (of order 3) and 3, 5 (of order 6, so we have
Theorem 4: k(Zi"is)(3i“'£‘) = -1 (mod 7), where ¢, - i, may be reduced modulo 3 and ¢, - %,
may be reduced modulo 6. .
This relationship is shown in Table 2.
TABLE 2

iy - i x
(mod 6) (mod 7)

13 = Zg o 1 2 3 4 5
(mod 3)
0 6 2 3 1 5 4
1 3 1 5 4 6 2
2 5 4 6 2 3 1

The same method can be applied to whatever case is desired: the next case, when 11
divides n, yields a four-dimensional table with 2500 entries.
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ON FIBONACCI NUMBERS OF THE FORM «x* + 1

RAY STEINER
Bowling Green State University, Bowling Green, OH 43403

Let F, (n nonnegative) be the nth term of the Fibonacci sequence, defined by Fo =0,
F, =1, F,,, =F,,, +F,, and let L, (n nonnegative) be the nth term of the Lucas sequence,
defined by L, = 2, L, =1, L,,, =L,,, +L,. In a previous paper [3], we showed that the

equation

(1) 'F, =y? +1

holds only for n = 1, 2, 3, and 5. However, the proof given was quite complicated and
depended upon some deep properties of units in quartic fields. Recently, Williams [4] has

given a simpler solution of (1) which depends on some very pretty identities involving the
Fibonacci and Lucas numbers. In this note, we present a completely elementary solution of
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