REFERENCES

- 1. Marjorie Bicknell. "A Primer for the Fibonacci Numbers. Part VII: An Introduction to Fibonacci Polynomials and Their Divisibility Properties." *The Fibonacci Quarterly* 8, No. 4 (1970):407-420.
- 2. M. N. S. Swamy. Problem B-74. The Fibonacci Quarterly 3, No. 3 (1965):236.
- 3. Problem E 1396. American Math. Monthly 67 (1960):81-82, 694.

A DIVISIBILITY PROPERTY OF BINOMIAL COEFFICIENTS

CARL S. WEISMAN

University of Rochester, Rochester, New York

Let p be a prime number. Let the integers $a_{n\ell}$ be defined by the identity

$$\binom{py}{n} = \sum_{\ell} a_{n\ell} \binom{y}{\ell}.$$

The purpose of this note is to prove that the exponent to which p divides $a_{n\ell}$ is at least $\ell - (n - \ell)/(p - 1)$.

Let Y be a set with y elements. Let Y_1, \ldots, Y_p be disjoint sets, each equipped with a fixed bijection to Y. We wish to count the subsets N of $Y_1 \cup \cdots \cup Y_p$ having exactly n elements. For such a setset N, denote by N_i the image of $N \cap Y_i$ in Y.

If j is an m-tuple (i_1, \ldots, i_m) with $1 \leq i_1 < i_2 < \cdots < i_m \leq p$, write $i \in \text{supp } j$ if $i = i_k$ for some k.

Let $S_j^m = \{x \in \cup N_i \mid x \in N_i \text{ if and only if } i \in \text{supp } j\}$. The sets S_j^m are pair-wise disjoint, and $N_i = \cup \{S_j^m \mid i \in \text{supp } j\}$. Moreover, it is easily seen that any change in the ordered p-tuple (N_1, \ldots, N_p) of subsets must change some S_j^m . So producing the sets N_1, \ldots, N_p is the same as producing the sets S_j^m .

Let $L = \bigcup N_i$, and let ℓ be its cardinality. Let $S^m = \bigcup_j S_j^m$; then S^m consists of the points of L that correspond to exactly m points of N. If t_m is the cardinality of S^m ,

therefore, one has $n = \ell + \sum_{m=2}^{P} (m-1)t_m$, and $n/p \le \ell \le n$.

We construct as follows. First select a subset L of Y with cardinality ℓ between n/p and n. Then select a subset S^p of L with cardinality t_p at most $(p-1)^{-1}(n-\ell)$. Then select a subset S^{p-1} of $L-S^p$ with cardinality t_{p-1} at most $(p-2)^{-1}(n-\ell-(p-1)t_p)$. Continue in this way until S^3 has been selected as a subset of $L-S^p-\cdots-S^4$ with cardinality t_3 at most $2^{-1}(n-\ell-(p-1)t_p-\cdots-3t_4)$. Now select a subset S^2 of $L-S^p-\cdots-S^3$ with cardinality t_2 equal to

$$n - \ell - \sum_{m=3}^{p} (m-1)t_m.$$

Define $S^1 = L - S^p - \cdots - S^2$ with cardinality t_1 . Finally, select a partition of each S^m into $\binom{p}{m}$ subsets S_j^m .

The above procedure yields the following expression for $\binom{py}{n}$:

$$\sum_{\ell} \binom{y}{\ell} \sum_{t_p} \binom{\ell}{t_p} \sum_{t_{p-1}} \binom{\ell-t}{t_{p-1}} \cdots \binom{\ell-t_p-\cdots-t_3}{t_2} \binom{p}{1}^{t_1} \cdots \binom{p}{p-1}^{t_{p-1}},$$

in which the numbers ℓ and t_m are constrained by the equalities and inequalities of the preceding paragraph. In this expression, each term in the coefficient of $\binom{\mathcal{Y}}{\ell}$ includes a power of p at least $t_1 + \cdots + t_{p-1} = \ell - t_p \ge \ell - (p-1)^{-1}(n-\ell)$.
