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(-30228| 75 (i) = (=)(F3(uy)|229) when uy = ~4 (mod 11)

(F3(uy) 229) when u;, = -2 (mod 11);

L}

(-30228

Fau))) = ()(Fy(w,)]|229).

The residues of u,, fl(uk), Fy(u), and fq(u;) modulo 229 are periodic and the length of the
period is 9. The following table gives the values of these residues and the signs of
(-30228|u,), (-30228|f, (u;)), (-30228|f,(u;)) and (-30228|f5(uy)).

k = 2° t =2 3 4 5 6 7 8 9 10 11

Uy (mod 229) 97 39 64 -53 121 -31 89 40 -7 97
f1(u,) (mod 229) 77 127 122 12 -63 177 79 -15 193
f3(uy) (mod 229) 51 -4 -109 12 132 -93
fo(u,) (mod 229) 103 159 >8

when u; = -4 (mod 11)
(-30228 u,) -1 +1 -1 -1 -1 +1 +1 +1 +1
(-30228 f,(u,)) +1 +1 +1 -1 -1
(-30228 f3(uy)) -1 -1 +1
(-30228 fq(uy)) -1

when u, = -2 (mod 11)
(-30228 u,) +1 -1 +1 +1 +1 -1 -1 -1 -1
(-30228 £, (u,)) +1 +1 -1 +1
(-30228 f,(up)) +1 -1 +1
(-30228 fq(uy)) -1 -1

Hence, (2) is impossible.

Summarizing the results, we see that (1) and (2) can hold for #n odd, only for n = 1 and
n = 7, and these values do indeed satisfy with u = 2, v = 1, x = 1, and u = 5042, v = 2911,
x =29. x = 1 gives the trivial solution N = 0 and x = 29 gives the solution N = 420.
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GENERATION OF FIBONACCI NUMBERS BY DIGITAL FILTERS

SALAH M. YOUSIF
California State University, Sacramento, California

ABSTRACT

This paper presents some applications of Fibonacci numbers in system and communication
theory. Methods of generating Fibonacci sequences and codes by sequential binary filters
are given.

INTRODUCT ION

The role that Fibonacci numbers play in system theory is worthy of engineering investi-
gations. Fibonacci numbers find their way in algebraic coding theory in communications,
linear sequential circuits, and linear digital filters. Although some of these applications
are not direct realizations of Fibonacci numbers, they provide the conceptual framework for
the related model. For example, the concept of recurrence equation that generates the num-
bers is utilized to generate difference codes which are used in radar ranging by long-range
radars, such as satellite tracking radars and radars that are used for planet's ranging [2].
Another example of Fibonacci numbers is one used to generate a model for population growth in
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animal and biological colonies. Digital realizations of these models will be given later in
the sequel. We will introduce some general applications of Fibonacci numbers and present
their digital filter realizations. Then, we present Fibonaccil recurrence codes, and give an
example of a binary digital sequential circuit to generate these codes.

GENERAL APPLICATIONS
The Z-transforms of discrete time function y(k); k = 0, 1, 2, ..., is defined by:

¢h 2y ()} =3 y k)27~
k=0
The Z-transform of y(k + n), n > 0, is given by:
n-1
(2 2{y(k + m)} = 2"¥(2) - ") ¥(Hz .
i=0

The Z-transform of the Fibonacci equation, after rearrangement,

(3) yk + 1) = y&) +yk - 1); y() =0, y(1) =1,
is given by:
(4) (z2 -2 -1)5(2) =0
The equation
(5) 22 -2-1=0

is the characteristic equation of the Fibonacci recurrence equation (3). The digital filter
that realizes equation (4), and generates the Fibonacci sequence represented by equation (3),
is shown in Figure 1.

y (k) y(k - 1) y(k - 2)
-1 Z-l —— —

™~

+ -

FIGURE 1. Fibonacci Seguence Generator

It is understood that the small box that contains 27! in Figure 1 represents a unit
delay. Unfortunately, the above filter is unstable, since one of the roots has absolute
value more than unity. However, this unstable behavior can be of great advantage if we
assume that y(k), k =0, 1, 2, ..., are elements in a field GF(p) of prime characteristic p.
An example of application of the Fibonacci sequences is modeling of population growth of
rabbit population by:
(6) yk) = yk - 1) + yk = 2) +uk) ...
where y (k) represents number of pairs of rabbits at the kth month, and u(k), k =0, 1, 2, ...,

is a control sequence which, if chosen properly, yields a stable population. The control
sequence u(k) may be chosen as feedback linear combination of y(k - 1) and y(k - 2), that is:

(7N u(k) = -By(k = 1) - By(k - 2).
Substituting (7) in (6) yields the equation:

(8) y(k) = (L - Byk - 1) + (1 - By(k - 2)

whose characteristic equation is given by:

9 2+ (B, - 1Dz + (B, - 1) = 0.

Clearly the roots of the characteristic equation (9) can be assigned arbitrarily by
proper choice of B, and B,.

A filter realization of this model is shown in Figure 2. The circles represent multi-
pliers by:

«, =1-8;, and «, =1- B,.

76

M e -



A A A A A A

¥k - 1) y @k - 2)

NN}
1

f
&
'

/

FIGURE 2. Controlled Population Model

DIFFERENCE CODES

Difference code transforms a given m-digit initial sequence a,, a;, ..., Qp._; into an
infinitely long sequence y,, ¥,, Y,, ..., sequentially by the linear difference equation,

boy(k) + byy(k = 1) + «-+ + byy(k - m) = 0; b,, b, # 0;
k=mym-1, ..., ay =y(0), a; =y), ..., ap_y=y(m - 1),

where y(k) and b(k) are elements of the finite Galois field, GF(p). The left characteris-
tic equation of the difference equation (10) is:

11D C(2) = by +byZ+ -+ + b,2".
The generating function of this code is given by the formal power series G(Z):

o

(12) G(2) = y(0) + y()Z + y(Z% + -++ =Y y(m2".
n=0
It can be shown [2] that each solution

H(O), y(l)s :"_/(2)9 ety

corresponding to (10) has a generating function

RS n_ A(2)
(13) G(2) = 3 ym2" = T3

n=0

where A(Z) is the polynomial in Z with the initial sequence a,, a;, ..., a,_; as coefficients;
that is,

e A) = ag +ail 4 e 4 ay 12"

The generation function is obtained from (13) by long division over the specified field.
For example, over the field of real numbers, the Fibonacci sequence is given as coefficients
of the power series G(Z) given by:

(15) G(Z)=——l——=1+z+222+323+52“+---

1 -2 - 2?

It is not difficult to see that difference codes over finited fields are periodic. The
Fibonacci sequence over the binary field has the generating function
A(Z) _ 1
G2y 4y g4 2

4

=1+2+2°+2"+2%+27 +2% 4 -

(16) G(Z) =

A(Z) = 1 + (0)2Z, since the initial code word is given the initial sequence a, = 1, a, = O.
Therefore, the difference code given by (16) is periodic, with period 3, and has the form
110110110110...

Periodic codes of maximal period are of interest in long-range radar ranging, especially
those used in satellite tracking. Those codes are generated by difference equations whose
characteristic equations are primitive, with respect to the given finite field. The polyno-
mial C(Z) of degree n is primitive over the field GF(p) if C(Z) divides Z2®"~1 - 1 and it
divides no polynomial (Z® - 1) with t < p" - 1. The difference code whose characteristic
polynomial is primitive and has degree n, is maximal period code. The maximal period of the
code equals p" - 1, where p is the prime characteristic of the field. Over the binary field
GF(2), the primitive characteristic polynomial, C(Z), of the Fibonacci equation is given by:
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(17) C(Zy =1+ 2 + 22.

C(Z) is primitive of degree 2. Therefore, the code generated by ((Z) is periodic with
maximal period 3. Long period difference codes of this type are usually used in satellite
communications. As an example, the primitive polynomial 1 + zx + x2? generates a code
sequence of a period 222 1 = 4,194,393,

The Fibonacci code sequence over GF(2) has correlation function R(%) = -1 for all
shifts £ except for £ = 0 and multiples of 22 - 1, at which the value of R(L) is 22 - 1 = 3, —
The correlation property is of great importance in the ranging operation of satellite radars.

It has been shown that Fibonacci sequences can be used in coding and communication
theory, and can be implemented by binary digital filters. Similar applications can utilize
this approach to generate Fibonacci numbers.

At Yalule
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THE FIBONACCI SERIES IN THE DECIMAL EQUIVALENTS OF FRACTIONS

CHARLES F. WINANS
Akron, Ohio

SUMMARY

Four numbers below 100, as denominators of fractions, yield decimal equivalents in which
the sequence of digits can alsc be produced by summations of the terms of the Fibonacci
series.

Where every Fibonacci term is used, and moving each term one place to the right, the
sequence is that for 1/89; using every second term, the sequence is that for 1/71; with every
third term, 2/59; and with every fourth term, 3/31.

The larger denominators: 9899, 9701, 9599, 9301, 8899, 8201, 7099, 6301, and 2399, give
repeating decimal equivalents which can be obtained by the summations of every Fibonacci term,
every second, third, ..., up to every ninth term, in this case moving each successive term
two places to the right. Moreover, the numerators associated with these denominators are:

1, 1, 2, 3, 5, 8, 13, 21, and 34, the first nine terms in the Fibonacci series.

Still larger denominators yield Fibonacci decimal equivalents. Using every fourteenth
term, and moving each term three places to the right, the sequence for 377/15701 is obtained.
The decimal equivalents for 9/71, 1/109, 1/10099, and others, can be generated from

right to left by a reverse summation of Fibonacci terms.

The Lucas-, Negative Fibonacci-, Tribonacci-, and other series produce sequences of
digits in repeating decimals.

INTRODUCTICN '

The Fibonacci series is thus defined: F, = 1; F, = 15 F,,_1) + F,, = Fn+1); and the first
several terms are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... . Recently, Brousseau [1]
called attention to the fact that the sequence of digits in the decimal equivalent of 1/89 is
developed by a summation of the Fibonacci series where each successive term is moved one place
to the right; thus,

112358

377

11235955056 ...
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