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21 Avenue Claude Bernard, 69622 Villeurbanne Cedex, France

e-mail: sombra@maply.univ-lyon1.fr

(Submitted July 2001–Final Revision March 2002)

To our friend Cristian Jansenson

Natural numbers occur everywhere in our daily life: a bus ticket, a car plate, an id number,
a timetable, etc. These numbers are mostly expressed in the decimal system. That is, for a
natural numbers n ∈ N we write n = (ak−1 . . . a0)10 for some 0 ≤ ai ≤ 9 and ak−1 6= 0, which
means that

n = ak−110k−1 + ak−210k−2 + · · ·+ a0.

Of particular interest are the so-called palindromic numbers. These are the numbers whose
decimal expansion is the same when read from left to right, and from right to left, that is
(ak−1 . . . a0)10 = (a0 . . . ak−1)10.

This kind of number appears already in the Ganitasârasamgraha, a sanskrit manuscript
dated around 850 AD. Therein the Indian mathematician Mahâv̂irâchârya described
12345654321 as the quantity which “beginning with one until it reaches six, then decreases in
reverse order” [1, p. 399]. This is a curious palindromic number, and in particular it is the
square of another palindrome: 12345654321 = 1111112. There are many ways of generating
palindromic numbers (see for instance [2]) including an interesting conjectural one [3].

Running across a palindrome by chance is a rare occurrence: for instance, the probability
of picking at random a number 104 ≤ n < 105 and obtaining a palindrome is 1/102, a fact
well-known by the collectors of palindromic bus tickets. Hence we tend to feel pretty lucky
when one of these rare numbers crosses our path. And the more digits it has, the luckier we
feel, and the luckier the number itself seems to be.

But, is this feeling really justified? The truth has to be said: this property is not intrinsic to
the number, but also depends on the base used to express it. So the number n := (894111498)10

is lucky (or palindromic) in base 10, but is not in base 13 as n = (113314377)13. Hence
each time we encounter 894111498 we have to – at least in principle – thank heaven for this
occurrence together with the fact that the human race has five fingers in each hand.

However, we can easily get independent of the base by defining a number to be intrinsically
palindromic if it is palindromic in some base. A little reflection shows that this definition is
meaningless as it stands: every number is palindromic in any base m > n, as n = (n)m. Indeed
it is much more natural to take into account the number of digits. So we define a number
n ∈ N to be k-palindromic if there is a base b such that the b-expansion of n is palindromic of
length k.

The previous observation shows that every number if 1-palindromic. Also note that n =
(11)n−1 provided that n ≥ 3, that is every n ≥ 3 is 2-palindromic.

What about k-palindromic numbers for k ≥ 3? Our thesis is that very few numbers are
k-palindromic, at least for k ≥ 4. The probability of a number in an appropriate range being,
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say, intrinsically 9-palindromic is small, and indeed quite close to the probability of being
9-palindromic in base 10. This justifies our first impression that 894111498 is lucky, regardless
of the base chosen to represent it.

To write down our results we first need to introduce the following counting functions.
Take k,N, b ∈ N and set

Φk(N, b) := #{n ≤ N ;n is k-palindromic in base b }.
Also set

Φk(N) := #{n ≤ N ;n is k-palindromic}.
Then Φk(N, b)/N and Φk(N)/N represent the density (or probability) of numbers below N
which are k-palindromic in base b and intrinsically k-palindromic, respectively.
Theorem 1: Let k ≥ 4, and write k = 2i+ r with i ∈ N and r = 0, 1. Then

Φk(N) ≤ 4(N + 1)
i+r+1

k .

Proof: A base b contributes to Φk(N) if and only if Φk(N, b) > 0, namely if and only if there
exists a number

n = ak−1b
k−1 + · · ·+ a0 ≤ N

palindromic in base b of length k, that is such that 0 ≤ aj ≤ b − 1 and ak−j = aj for
j = 0, . . . , i+ r, and ak−1 6= 0. Then bk−1 + 1 ≤ n ≤ N , and hence b contributes to Φk(N) if

and only if b ≤ (N − 1)
1

k−1 .
We consider separately the cases b ≤ (N + 1)

1
k and (N + 1)

1
k < b ≤ (N − 1)

1
k−1 . In the

first case, the largest k-palindrome in base b is
(b− 1)(bk−1 + · · ·+ 1) = bk − 1 ≤ N,

and so Φk(N, b) = Φk(∞, b) = (b− 1)bi+r−1.
Now for the second case we let θ(b) ∈ N be the largest integer such that θ(b)(bk−1+1) ≤ N ,

that is θ(b) = [N/(bk−1 + 1)] ≤ N/bk−1. Then (θ(b) + 1)(bk−1 + 1) > N and so every k-
palindromic number in base b begins with ak−1 ≤ θ(b). Hence

Φk(N, b) ≤ θ(b)bi+r−1 ≤ N/bi.
Set

L := [(N + 1)
1
k ] and M := [(N − 1)

1
k−1 ].

We split the sum Φk(N) = ϕ+ χ+ ψ with ϕ :=
∑L−1

b=2 Φk(N, b), ψ :=
∑M

b=L+2 Φk(N, b), and
χ := Φk(N,L) + Φk(N,L+ 1). From the previous considerations we conclude that

ϕ ≤
L−1∑
b=2

bi+r ≤
∫ L

2

ti+rdt ≤ Li+r+1

i+ r + 1
≤ (N + 1)

i+r+1
k

i+ r + 1
.

On the other hand

ψ ≤
M∑

L+2

N

bi
≤ N

∫ M

L+1

dt

ti
≤ N

(i− 1)(L+ 1)i−1
≤ (N + 1)

i+r+1
k

i− 1
.

Finally χ ≤ Li+r +N/(L+ 1)i ≤ 2(N + 1)
i+r

k and thus

Φk(N) ≤
(

2
(N + 1)

1
k

+
1

i+ r + 1
+

1
i− 1

)
(N + 1)

i+r+1
k ≤ 4(N + 1)

i+r+1
k .
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Let k = 2i + r ≥ 4, and let b ≥ 2 be a base. Set N := bk − 1, so that N is larger than every
number whose representation in base b has length k. Then

Φk(N, b) = Φk(∞, b) = (b− 1)bi+r−1,

and so the density of numbers below N which are k-palindromic in base b is (b−1)bi+r−1/N ∼
1/bi. On the other hand, the previous result shows that the density of intrinsic k-palindromes

below N is bounded by 4(bk)
i+r+1

k /(bk − 1) ≤ 4/bi−1.
For instance, the probability of a number n < 109 being 9-palindromic in base 10 is

0.00009, while the probability of it being 9-palindromic in any base is below 0.004.
¿From the point of view of probability, the situation is then – in most cases – quite clear.

For k ≤ 2 every number is k-palindromic, while for k ≥ 4 almost every number is not. The
critical case is k := 3. Consider the following table:

Φ3(102 + 100)− Φ3(100) = 61
Φ3(103 + 100)− Φ3(103) = 70
Φ3(104 + 100)− Φ3(104) = 83
Φ3(105 + 100)− Φ3(105) = 86
Φ3(106 + 100)− Φ3(106) = 89
Φ3(107 + 100)− Φ3(107) = 94

This suggests that almost every number is 3-palindromic, but not every sufficiently large
number. To tackle this problem we consider the following reformulation. We recall that
{ξ} := ξ − [ξ] ∈ [0, 1) denotes the fractional part of a real number ξ ∈ R.
Lemma 2: Let n, b ∈ N such that the b-expansion of n has length 3. Then n is 3-palindromic
in base b if and only if {

(n+ 1)
b

b2 + 1

}
<

b

b2 + 1
.

Proof: First note that the hypothesis that the b-expansion of n has length 3 is equivalent
to the fact that b2 + 1 ≤ n ≤ b3 − 1. Now n is 3-palindromic in base b if and only if there
exists 0 < e < b and 0 ≤ f < b such that

n = e(b2 + 1) + fb.

Solving the associated Diophantine linear equation n = x(b2 + 1) + yb with respect to x, y we
see that the above representation is equivalent to the existence of ` ∈ Z satisfying

0 < n− `b < b and 0 ≤ `(b2 + 1)− nb < b.

The second pair of inequalities is equivalent to nb/(b2 + 1) ≤ ` < (n + 1)b/(b2 + 1), and so
this implies that {(n+ 1)b/(b2 + 1)} < b/(b2 + 1). Then this condition is necessary for n to be
3-palindromic in base b.

Let’s check that it is also sufficient. The integer ` := [(n+1)b/(b2 +1)] satisfies the second
pair of inequalities. Then it only remains to prove that it also satisfies the first pair, which is
equivalent to ` < n/b < `+ 1. This follows from the inequalities

(n+ 1)
b

b2 + 1
<
n

b
< n

b

b2 + 1
+ 1,

which are in turn a consequence of the hyposthesis b2 + 1 ≤ n ≤ b3 − 1.
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After the first version of this paper was written, N.J.A. Sloane included the sequences
of k-palindromic numbers for k = 3, . . . , 9 in his on-line Encyclopedia of Integer Sequences
(http://www.research.att.com/∼njas/sequences). We refer to it for this additional numerical
data.

Now we begin to look at palindromicity as an intrinsic property – not attached to any
particular base – nothing stops us from considering the fact that a given number can be
palindromic in several different bases. For instance

3074 = (44244)5 = (22122)6.

Common sense dictates that multiple palindromicity should be a much more rare occurrence
than a simple one, which is also rare as we have already shown. In fact it even seems unclear
whether there are numbers which are k-palindromic in as many bases as desired. To formalize
this, let

µk(n) := #{b;n is k-palindromic in base b}.
We first propose the problem of determining whether µk is unbounded or not. Again the cases
k = 1, 2 are easy. In the first case n = (n)m for any base m > n, and so µ1(n) =∞ for every
n. In the second case, set n := 22u+1 for some u ∈ N. Then n = 2v(2w−1)+2v = (2v, 2v)2w−1

for v < w such that v + w = 2u+ 1. Then µ2(n) ≥ u. The following solves the case k = 3.
Theorem 3: There exists an infinite sequence n1 < n2 < n3 < . . . such that

µ3(nj) ≥ 1
7

log(nj + 1).

Proof: Take N � 0 and assume that µ3(n) < (1/7) log(N + 1) for all n ≤ N , so that∑
b

Φ3(N, b) =
N∑

n=1

µ3(n) <
1
7
N log(N + 1). (1)

We will soon see that this is contradictory:
Set L := [(N + 1)

1
3 ] and M := [(N − 1)

1
2 ]. For L ≤ b ≤M we let ζ(b) ∈ N be the largest

integer such that
ζ(b)(b2 + 1) + (b− 1)b ≤ N.

Then 1 ≤ ζ(b) ≤ b− 1, and also every 3-palindromic number n := eb2 + fb + e with e ≤ ζ(b)
is less or equal that N . Hence Φ3(N, b) ≥ ζ(b)b which implies that

∑
b

Φ3(N, b) ≥
M∑

b=L

Φ3(N, b) ≥
M∑

b=L

ζ(b)b ≥
M∑

b=L

b

(
N

b2 + 1
− 2
)
,

as ζ(b) + 2 ≥ N/(b2 + 1). We have that

M∑
b=L

b

(
N

b2 + 1
− 2
)
≥ N

∫ M+1

L

t

t2 + 1
dt− 2M2 ≥ N

2
(log((M + 1)2 + 1)− log(L2 + 1))− 2N.

We have that (M + 1)2 + 1 ≥ N and L2 + 1 ≤ 2N2/3 and thus we conclude
∑

p Φ3(N, p) >
N
6 logN − 2N − log 2, which contradicts Inequality (1) for N large enough.

It follows that for each (sufficiently large) N ∈ N there exists an n ≤ N such that

µ3(n) ≥ 1
7

log(N + 1) ≥ 1
7

log(n+ 1).
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The fact that µ3(n) <∞ implies that the set of such n’s is infinite.
Here is some sample data for the cases k := 4, 5.

µ4(624) = µ4(910) = 2, µ4(19040) = 3, µ5(2293) = 2.
For k, `,N ∈ N, we let Φk,`(N) be the number of n ≤ N which are k-palindromes in ` different
bases, that is

Φk,`(N) := #{n ≤ N ;µk(n) ≥ `}.

In particular Φk,1 = Φk. The following table gives some more informative data.

k ` N Φk,`(N)
4 2 104 13
4 3 105 2
4 4 105 0
5 2 104 10
5 3 105 0
6 2 105 0

This suggests that for k ≥ 4, ` ≥ 2 and k + ` ≥ 8, there are no k-palindromic numbers
with multiplicity ` whatsoever.

Finally we can also consider
µ≥k(n) := #{b;n is j-palindromic in base b for some j ≥ k} =

∑
j≥k

µj(n),

that is the number of different bases in which n is a palindrome of length at least k. It is easy
to see that this function is unbounded; we have that

nL := 22L

− 1 =

2L−`︷ ︸︸ ︷
(22`

− 1, . . . , 22`

− 1)22`

and so nL is 2L−`-palindromic in base 22`

for ` = 0, . . . , L. Hence µ≥k(nL) ≥ L− log2 k.
A further problem is to determine the density of k-palindromic numbers in ` different

bases. From this point of view, Theorem 1 is an important advance towards the solution of
the cases k ≥ 4 and ` = 1.

The cases when ` ≥ 2 seem to be much more elusive, but also interesting. A solution of
them would allow us, for instance, to know how lucky we are when the number of the taxi-cab
we are riding is the

19040 = (8888)13 = (5995)15 = (2, 14, 14, 2)19.
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