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PROBLEMS PROPOSED IN THIS ISSUE

H-609 Proposed by Mario Catalani, University of Torino, Italy
Let Rn be the right-justified Pascal-triangle matrix, that is the n × n matrix with the

(i, j) element rij , 1 ≤ i, j ≤ n given by

rij =
(
i− 1
n− j

)
.

a. Find tr(Rm
n ), where tr(·) is the trace operator and m is a positive integer.

b. Find |Rn + R−1
n |, where | · | is the determinant operator.

H-610 Proposed by Jayantibhai M. Patel, Ahmedabad, India
If x = (−2F 2

n , 2F2n, L
2
n), y = (2F2n, 2F 2

n −L2
n, 2F2n) and z = (L2

n, 2F2n,−2F 2
n) are three

vectors, then prove that
a. x, y, z are mutually perpendicular vectors.
b. ||x|| = ||y|| = ||z|| = 2F 2

n + L2
n.

c. x · (y × z) = ||x||3 = (2F 2
n + L2

n)3.

H-611 Proposed by Ó. Ciaurri Ramı́rez, Logroño, Spain and J.L. Dı́az-Barrero,
Barcelona, Spain

Evaluate

∞∑
n=0

1
(2α)n(n+ 2)

n∑
k=0

Fk+1Fn−k+1

k + 1
,

where α denotes the golden section.
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SOLUTIONS

Roots of the cubic defining Tribonacci sequences

H-597 Proposed by Mario Catalani, University of Torino, Italy
(Vol. 41, no. 2, May 2003)

Let α, β, γ be the roots of the trinomial x3 − x2 − x− 1 = 0. Express

Un =
n∑

i=1

n−i∑
j=0

αiβjγn−i−j

in terms of the Tribonacci sequence {Tn} given by T0 = 0, T1 = 1, T2 = 1 and Tn =
Tn−1 + Tn−2 + Tn−3 for n ≥ 3.
Solution by V. Mathe, Marseille, France

We replace the subscript i = 1 by i = 0 in the proposed identity.We then have

n−i∑
j=0

βjγ−j = −γ β
n−i+1γ−n+i−1 − 1

−β + γ
,

therefore

n∑
i=0

n−i∑
j=0

αiβjγn−i−j = −
n∑

i=0

αi β
n−i+1 − γn−i+1

γ − β

= −−βα
n+2 + γαn+2 + βn+2α− βn+2γ − γn+2α+ γn+2β

(−β + γ)(α− β)(−α+ γ)

=
αn+2

(α− β)(α− γ)
+

βn+2

(β − α)(β − γ)
+

γn+2

(γ − α)(γ − β)
. (1)

We know (see, for example, [1]), that this last expression equals Tn+1, where (Tn)n≥0 is the
Tribonacci sequence.

V. Mathe provides also the following generalization.
Let x1, . . . , xk be distinct complex numbers, roots of the equation

f(x) =
k∏

i=1

(x− xi) = xk − a1x
k−1 − · · · − ak = 0.
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Let (T (k)
n )n≥0 be the linearly recurrent sequence given by T

(k)
n = 0 for n = 0, . . . , k − 2,

T
(k)
k−1 = 1, and

T (k)
n = a1T

(k)
n−1 + · · ·+ akT

(k)
n−k

for all n ≥ k. Let also (U (k)
n )n≥0 be the sequence whose general formula is

U (k)
n =

∑
i1+···+ik=n

ij≥0, j=1,...,k

xi1
1 . . . xik

k . (2)

Then the identity

U (k)
n = T

(k)
n+k−1 (3)

holds for all n ≥ 0.
Note that the sequence (T (k)

n )n≥0 defined above for the choice of roots (x1, x2, x3) =

(α, β, γ) is not exactly the sequence (Tn)n≥3, but the formula Tn = T
(3)
n+1 holds for all n ≥ 0.

To prove (3), V. Mathe notes that by the method of [1], it follows that

T (k)
n =

k∑
j=1

xn
j

∏
i 6=j

1
(xj − xi)

. (4)

We first supply a short proof of (4). Writing T (k)
n =

∑k
j=1 cjx

n
j with some unknown coefficients

cj for j = 1, . . . , k and treating this as a system of linear equations in the unknowns cj
for j = 1, . . . , k we note that the determinant of this system is precisely the Vandermonde
determinant whose jth column is [1, xj , . . . , x

k−1
j ]T and whose value is

∆k(x1, . . . , xk) =
∏

1≤i<j≤k

(xi − xj).

By Kramer’s rule, we have cj = ∆j,k(x1, . . . , xk)/∆k(x1, . . . , xk), where ∆j,k is the determi-
nant obtained from ∆k(x1, . . . , xk) by replacing its jth column by the column of coefficients

[T (k)
0 , . . . , T

(k)
k−1]T = [0, . . . , 0, 1]T . Expansing this determinant using the jth column, we get

that
∆j,k(x1, . . . , xk) = (−1)j−1∆k−1(x1, . . . , xj−1, xj+1, . . . , xk)
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= (−1)j−1
∏

1≤i≤`
i, 6̀=j

(xi − x`).

Performing the obvious simplifications, we get

cj =
∆j,k(x1, . . . , xk)
∆k(x1, . . . , xk)

=
∏
i 6=j

1
(xj − xi)

,

which proves (4).
Now, V. Mathe notes that one can now prove (3) by induction. Indeed, one notes that

when k = 2 we just have

∑
i+j=n
i,j≥0

xi
1x

j
2 =

xn+1
1 − xn+1

2

x1 − x2
=
x

n+(2−1)
1

x1 − x2
+
x

n+(2−1)
2

x2 − x1
, (5)

and one now recognizes, by (4), that the right hand of (5) is the same as the right hand side
of (4) at k = 2 which proves (3) when k = 2. Assuming by induction that (3) holds for k − 1
and the set of complex numbers (x2, . . . , xk), we then get, by separating x1 in (2), that

U (k)
n = U (k)

n (x1, . . . , xk) =
n∑

j=0

xj
1U

(k−1)
n−j (x2, . . . , xk) =

n∑
j=0

xj
1

k∑
i=2

xn−j+k−2
i

∏
2≤`≤k
6̀=i

1
(xi − x`)

=
k∑

i=2

xk−2
i

( ∏
2≤`≤k
6̀=i

1
(xi − x`)

)( n∑
j=0

xj
1x

n−j
i

)
=

k∑
i=2

xk−2
i

∏
2≤`≤k

` 6=i

1
(xi − x`)

·
(xn+1

i − xn+1
1

xi − x1

)

=
n∑

i=1

x
n+(k−1)
i

∏
1≤`≤k

` 6=i

1
(xi − x`)

− xn+1
1

( n∑
i=1

xk−2
i

∏
1≤`≤k
6̀=i

1
(xi − x`)

)
,

and it remains to remark that

n∑
i=1

xk−2
i

∏
1≤`≤k
6̀=i

1
(xi − x`)

= 0,

formula which holds because T (k)
k−2 = 0. This completes the proof of the generalization.
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Editor’s remark. Some of the charm of this problem was lost because in the original state-
ment of the problem the outer sum started at i = 1, although the proposers solution indicates
that the sum should have started at i = 0. Some of the solvers noted this and provided so-
lutions with the outer sum started at i = 0 as in the solution presented here. Most solutions
arrived in some way at formula (1) and then quoted some results from the literature (like
[1]) which relate (1) to the Tribonacci numbers. When the outer sum started at i = 1, the
resulting answer was a constant multiple of Tn+1, the constant multiple depending, as noted
by W. Janous, of the particular assignment of the symbols α, β, γ to the three roots of the
trinomial x3 − x2 − x− 1.
1. Gwang-Yeon Lee, Jin-Soo Kim and Tae Ho Cho, “Generalized Fibonacci Functions and
Sequences of Generalized Fibonacci Functions”, The Fibonacci Quarterly 41.2 (2003): 108–
121.

Also solved by Paul Bruckman, Kenneth Davenport, Walther Janous, Gurdial
Arora and Sindhu Unnithan (jointly) and the proposer.

Find the Eigenvalue

H-598 Proposed by José Dı́az-Barrero & Juan José Egozcue, Barcelona, Spain
(Vol. 41, no. 2, May 2003)

Show that all the roots of the equation

∣∣∣∣∣∣∣
F1Fn . . . F1F3 F1F2 F 2

1 − x
F2Fn . . . F2F3 F 2

2 − x F2F1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F 2

n − x . . . FnF3 FnF2 FnF1

∣∣∣∣∣∣∣ = 0

are integers.
Solution based on the solutions of M. Catalani, Torino, Italy and W. Janous,
Innsbruck, Austria

Permuting the columns of the above determinant using the permutation i 7−→ n − i for
i = 1, . . . , n, the given equation becomes

∣∣∣∣∣∣∣
F 2

1 − x F2F1 . . . Fn−1F1 FnF1

F1F2 F 2
2 − x . . . Fn−1F2 FnF2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F1Fn F2Fn . . . Fn−1Fn F 2

n − x

∣∣∣∣∣∣∣ = 0,

and we recognize that x is an eigenvalue of the matrix whose ith row is [F1Fi, F2Fi, . . . , FnFi].
More generally, let a1, . . . , an be any complex numbers and let A be the matrix whose ith row
is [a1ai, a2ai, . . . , anai]. Since all rows of A are multiples of the vector [a1, . . . , an], it is clear
that the rank of A is ≤ 1 and therefore x = 0 is a root of the equation det(xIn −A) = 0 with
multiplicity ≥ n − 1. In particular, det(A − xIn) = xn−1(x − c). Note now that c = tr(A) =
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i=1 a

2
i . In the particular case when ai = Fi for i = 1, . . . , n, we get that the roots x of the

given equation are x = 0 with multiplicity n− 1 and x =
∑n

i=1 F
2
i .

Note. V. Mathe provided a basis of eigenvectors for the case in which ai = Fi for i = 1, . . . , n.

Also solved by Paul Bruckman, Kenneth Davenport, L.A.G. Dresel, V. Mathe,
and the proposers.

Please Send in Proposals!

PROBLEM SECTION IN HONOUR OF PROFESSOR

RAYMOND E. WHITNEY

Raymond E. Whitney served as the Editor of the Advanced Problem Section of the Fibonacci
Quarterly for 36 years from Volume 5 no. 3, 1967 until Volume 41 no. 1, 2003. During his
time as the Editor, the Advanced Problem Section has published more than 500 problems.

This Department would like to have the Advanced Problem Section of one of the issues for 2005
dedicated to Professor Whitney for his many years of service. We are encouraging the proposers
to submit problems to be dedicated to Professor Raymond E. Whitney before December 31,
2004.

Errata: Advanced Problems and Solutions, Vol. 41, no. 5, November 2003, Page
473.
1. Displayed formula (d) should have been

5n−1L2n+1 =
2n−1∑

k=0
56|2n−k+2

(−1)b(8n+k+2)/5c
(

4n− 1
k

)
.

2. The last three lines of displayed formula (2) should have been “if k ≡ 2 (mod 5)”,“if k ≡ 3
(mod 5)” and “if k ≡ 4 (mod 5)”, respectively.
The Editor apologizes for these oversights.
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