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1. INTRODUCTION

There are many Fibonacci identities to be found in short informal articles in the early
editions of The Fibonacci Quarterly. See, for example, [1] and [2]. The aim of the authors was
to gather Fibonacci identities from diverse sources and display them for all to see. Many of the
identities that appeared were quite old and possessed beautiful symmetry. As such, some were
already classics, and today appear regularly in research papers. Perhaps the best example is
Simson’s identity, which has undergone many generalizations. For an up to date account see
[7]. However, other identities have received little or no attention, and have not featured in the
literature since those early days. The purpose of this paper is to present some new insight into
two such identities. We assume throughout that the sequences in this paper are defined for all
integers, and henceforth we do not restate this.

2. CANDIDO’S IDENTITY
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is quoted in [2] and first appeared in 1951 [3]. We decided to increase the number of terms on
the left, and were pleasantly surprised to find the following.
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Before proceeding we shed a little more light on the nature of (2.1)-(2.4). In fact, the
sequence

{
F 4

n

}
is generated by a fifth order linear recurrence, namely

rn = 5rn−1 + 15rn−2 − 15rn−3 − 5rn−4 + rn−5. (2.5)

Indeed, for fixed integers k and m, sequences such as
{
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2
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}
and

{
F 3
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are also

generated by this recurrence. Thus, by linearity, the sequences whose nth terms are the left or
right sides of (2.1)-(2.4) are generated by (2.5) as well. So to discover (2.2), for example, we
simply put(
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and solve the set of five linear equations that arise after the substitution of n = 0, 1, 2, 3, and
4. In so doing we are simply choosing the constants a, b, c, d, e that yield the same initial
values for the sequences whose nth terms are defined by the left and right sides. If such an
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identity exists, the equations that arise are solvable. Of course the resulting identity would be
memorable if the coefficients on the right displayed a pleasing symmetry.

By using a similar approach we have found the following:
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In the sequel we require the following lemma which is contained in [8].
Lemma 1: Let {wn} be a sequence of complex numbers defined by

wn =
k∑

i=1

ciwn−i,

where c1, . . . , ck and w0, . . . , wk−1 are given complex numbers with ck 6= 0. Let h ≥ 1 be an
integer. Then
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}
is generated by a linear recurrence of order

(
h+k−1

h

)
.

Lemma 1 shows that
{
Fh

n

}
is generated by a linear recurrence of order h+1, and so

{
F 6

n

}
is generated by a linear recurrence of order 7. This gives an insight as to why identities (2.6)-
(2.8) can be considered to be special. First, there are only four terms on the right instead of a
possible seven terms, and second, the coefficients on the right have a pleasing symmetry. Notice
also that there is an even number of squares on the left of (2.6)-(2.8). Similar observations
can also be made about identities (2.2) and (2.4).

We are now ready to state our main results in two theorems. With hardly any extra effort
we can formulate and prove our results for the more general sequence

Hn = Hn−1 +Hn−2, H0 = a, H1 = b, (2.9)

which includes the Fibonacci and Lucas sequences as special cases (see [6]).
Theorem 1: Let k be a positive integer. Then
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Theorem 1, which yields (2.2), (2.4), and (2.6)-(2.8), addresses the case in which there are
an even number of squares inside the brackets on the left. Our investigations have uncovered
results for higher powers (that is, where the sum of squares on the left is raised to higher
powers), however they are not as succinct as the results in Theorem 1. Specifically, for powers
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2m,m ≥ 2, the number of 4mth powers on the right is 4m + 1, which is the maximum
number predicted by Lemma 1, and there is no symmetry in the coefficients. For powers
2m+ 1,m ≥ 2. the situation is slightly better. For this case we have found identities in which
the number of (4m+ 2)th powers on the right is 4m+ 2, one less than the maximum given by
Lemma 1. Furthermore, the coefficients on the right possess symmetry, and can be expressed
as polynomials in Fk+1 and Fk. However, even for small m these identities become rather
unwieldy, and for this reason we do not present them here.

A hint as to the nature of the identities discussed in the paragraph above can be found
in our next theorem, which is analogous to Theorem 1. First, we need to define certain
polynomials in Fk+1 and Fk. For 0 ≤ i ≤ 4, we define polynomials Pi = Pi(Fk+1, Fk) by


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Similarly, for 0 ≤ i ≤ 6, we define polynomials Qi = Qi(Fk+1, Fk) by
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Theorem 2: Let k be a positive integer. Then, with the polynomials Pi and Qi as defined
above, we have
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Here, in contrast to Theorem 1, there are an odd number of squares inside the brackets
on the left. Furthermore, while the coefficients on the right are not as succinct as in Theorem
1, they are symmetric in the sense that Pi = P4−i and Qi = Q6−i. In addition, each of the
Pi and Qi are homogeneous polynomials in Fk+1 and Fk of degree 4 and 6, respectively, and,
ignoring sign, there is symmetry in their coefficients. We note that Candido’s identity arises
from (2.12) with k = 1.
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Interestingly, unlike the situation in Theorem 1, the pattern of the identities in Theorem
2 seems to continue for higher powers. For the integers 4 ≤ m ≤ 10, we have checked that
there are identities of the form

C

(
2k∑
i=0

H2
n+i

)m

=
2m∑
i=0

R
(m)
i (Fk+1, Fk)H2m

n+k+i−m. (2.14)

In (2.14), for 0 ≤ i ≤ 2m, each polynomial R(m)
i = R

(m)
i (Fk+1, Fk) is homogeneous of degree

2m in Fk+1 and Fk, and the types of symmetry discussed in the previous paragraph carry over.
Also, as we can see if we compare the Pi and Qi, the coefficients of the R(m)

i increase in size
quite rapidly with m. We illustrate this by considering the case m = 4. For this case the value
of C in (2.14) is 163800, and the coefficients of R(4)

i , 0 ≤ i ≤ 4, are given below. Reading from
the left, the first number is the coefficient of F 8

k+1, the second is the coefficient of F 7
k+1Fk, and

so on. Recall also that R(4)
i = R

(4)
8−i.



R
(4)
0 : 0,−10,−3,−34, 198, 34,−3, 10, 0

R
(4)
1 : 0, 270,−36, 1542,−6984,−1542,−36,−270, 0

R
(4)
2 : 0, 10530, 14391, 22698,−144846,−22698, 14391,−10530, 0

R
(4)
3 : 0,−14040, 14508,−194376, 1944072, 194376, 14508, 14040, 0

R
(4)
4 : 163800, 755300, 971880,−1157260,−542880, 1157260, 971880,−755300, 163800

In order to prove Theorems 1 and 2 we have found it convenient to make use of a powerful
technique developed by Dresel [4]. Although Dresel’s paper focuses mainly on the Fibonacci
and Lucas sequences, his Verification Theorem carries over to more general sequences, and, in
particular, to the sequence {Hn}. See Sections 3 and 8 in [4]. We prove only (2.13) since the
proofs of our remaining results are similar. We require the following sum, which can be proved
by mathematical induction.

n∑
i=1

H2
i = HnHn+1 −H0H1. (2.15)

With the use of (2.15), the left side of (2.13) becomes

300(Hn+2kHn+2k+1 −Hn−1Hn)3 (2.16)

and, upon expansion, this yields

300
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3
n

)
.

(2.17)
Following Dresel, we see that (2.17) is homogeneous of degree 6 in the variable n. The right
side of (2.13) is also homogeneous of degree 6 in the variable n.

We next consider the variable k. The right side of (2.13) is homogeneous of degree 12 in
k. However, as it stands, (2.17) is not homogeneous of degree 12 in k. This can be remedied
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by inserting appropriate powers of αβ = −1, where α and β are the roots of x2 − x − 1 = 0.
To this end, working from left to right, we insert the coefficients (αβ)0, (αβ)2k, (αβ)4k, and
(αβ)6k.

In summary, (2.13) is an equation that is homogeneous of degree 6 in n, and homogeneous
of degree 12 in k. To complete the proof, it suffices to verify that (2.13) is true for seven
distinct values of n, say 1 ≤ n ≤ 7. To verify that (2.13) is true for n = 1, say, one simply
substitutes n = 1 and verifies that the resulting equation is true for thirteen distinct values
of k, for example 1 ≤ k ≤ 13. This procedure is repeated for the other six values of n. We
have managed to accomplish these verifications quite quickly with the help of the computer
algebra system Mathematica 3.0, where the command “Fibonacci[n]” calls up the nth Fibonacci
number. We also used the fact that Hn = aFn−1 + bFn for all integers n(see (8) in [6]). In
essence, then, we have proved the validity of (2.13) by verifying its validity for ninety-one
distinct ordered pairs (n, k). Finally, we cannot overstate our reliance on Mathematica 3.0
during the discovery process, during which, as we hinted earlier, it was used to solve formidable
systems of simultaneous equations.

3. AURIFEUILLE’S IDENTITY

An old and beautiful identity of Aurifeuille states

L5n = Ln (L2n + 5Fn + 3) (L2n − 5Fn + 3) , n odd. (3.1)

Aurifeuille’s identity gives certain factors of L5n when n is odd, and, according to Maxey
Brooke [1] it dates back to 1879. We have found a generalization of Aurifeuille’s identity that
holds for the sequences {

Un = pUn−1 + Un−2, U0 = 0, U1 = 1,
Vn = pVn−1 + Vn−2, V0 = 2, V1 = p,

(3.2)

provided the integer p is suitably restricted. The sequence {Un} and {Vn} generalize the
Fibonacci and Lucas sequences, respectively. Our result is contained in the following theorem.
Theorem 3: In the sequences (3.2) let p = L2k+1, where k is any integer. Then

V5n = Vn(V2n + 5F2k+1Un + 3)(V2n − 5F2k+1Un + 3), n odd. (3.3)

Proof: We make use of the closed forms

Un =
γn − δn

γ − δ
and Vn = γn + δn (3.4)

in which γ = p+
√

p2+4

2 and δ = p−
√

p2+4

2 . Then (γ − δ)2 = p2 + 4 = L2
2k+1 + 4 = 5F 2

2k+1,
where the last equality follows from I12 on page 56 in [5]. Keeping in mind that n is assumed
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to be odd, and that γδ = −1, we have

V5n = γ5n + δ5n

= (γn + δn)
(
γ4n − γ3nδn + γ2nδ2n − γnδ3n + δ4n

)
= Vn

(
γ4n + δ4n + 1− (γδ)n (

γ2n + δ2n
))

= Vn

(
γ4n + δ4n + 1 + γ2n + δ2n

)
= Vn

(
γ4n + δ4n + 2 + 6

(
γ2n + δ2n

)
+ 9− 5

(
γ2n + δ2n + 2

))
= Vn

((
γ2n + δ2n

)2
+ 6

(
γ2n + δ2n

)
+ 9− 5 (γn − δn)2

)

= Vn

(
V 2

2n + 6V2n + 9− 5 (γ − δ)2
(
γn − δn

γ − δ

)2
)

= Vn

(
(V2n + 3)2 − (5F2k+1Un)2

)
, and Theorem 3 follows.

When k = 0 we see that p = 1, Un = Fn, Vn = Ln, and (3.3) reduces to (3.1).
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