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PROBLEMS PROPOSED IN THIS ISSUE

H-612 Proposed by Mario Catalani, University of Torino, Italy
Let ar be the sequence ar = ar−1 + 2r for r ≥ 1, with a0 = 0. Let An be the matrix

elements aij = min(i, j), 1 ≤ i, j ≤ n, and let I be the identity matrix. Find

bn = |An + arI|

as a function of r and n, where | · | is the determinant operator.

H-613 Proposed by Jayantibhai M. Patel, Ahmedabad, India
For any positive integer n, prove that
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H-614 Proposed by R.S. Melham, Sydney, Australia
Prove the identity
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SOLUTIONS

Fibonacci meets Catalan

H-599 Proposed by the Editor
(Vol. 41, no. 4, August 2003)

For every n ≥ 0 let Cn :=
1

n+ 1

(
2n
n

)
be the nth Catalan number. Show that all the

solutions of the diophantine equation Fm = Cn have m ≤ 5.
Solution by the Editor

The inequality (
2n
n

)
≥ 22n

n+ 1
(1)

can be immediately shown to hold by induction on n. Indeed, (1) is an equality at n = 0, 1
while assuming that (1) holds for n then

(
2(n+ 1)
(n+ 1)

)
=

(2n+ 1)(2n+ 2)
(n+ 1)2

·
(

2n
n

)
≥ 2(2n+ 1)

n+ 1
· 22n

n+ 1
,

and it suffices to check that

2(2n+ 1)
n+ 1

· 22n

n+ 1
>

22n+2

n+ 2
,

which is equivalent to
(2n+ 1)(n+ 2) > 2(n+ 1)2,

which in turn is equivalent to

2n2 + 5n+ 2 > 2n2 + 4n+ 2,

which obviously holds. So, (1) holds for all n ≥ 0. In particular, with Fm = Cn, we get

Fm = Cn ≥
1

n+ 1
· 22n

n+ 1
=

22n

(n+ 1)2
. (2)

Let α = (1 +
√

5)/2. The inequality Fm < αm holds for all m ≥ 0 and it can be checked by
induction on m, while the inequality

( 2
α

)n

> α(n+ 1) (3)
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holds for all n ≥ 16. And so, assuming that n ≥ 16, inequality (3) implies that

22n

(n+ 1)2
> α2n+2,

therefore

αm > Fm = Cn >
22n

(n+ 1)2
> α2n+2,

which implies that m > 2n + 2. By the Primitive Divisor Theorem (see, for example, [1]),
we know that for any k > 12, Fk is divisible by a prime number p with p ≡ ±1 (mod k). In
particular, p ≥ k − 1. Thus, since m ≥ 2n+ 2 and n ≥ 16, it follows that Fm is divisible by a
prime number p ≥ m− 1 ≥ 2n+ 1. Of course, such a prime can not divide Cn because Cn is a
divisor of (2n)!. This contradiction shows that n ≤ 15. Listing all the Catalan numbers Cn up
to n = 15, we get that the largest value of n for which Cn = Fm for some m is C3 = F5 = 5.
1. Minoru Yabuta, “A Simple Proof of Carmichael’s Theorem on Primitive Divisors”, The
Fibonacci Quarterly 39.5 (2001): 439–443.

The One-Third Squares in the Pseudo Fibonacci Sequence

H-600 Proposed by Arulappah Eswarathasan, Hofstra University, Hempstead,
NY
(Vol. 41, no. 4, August 2003)

The Pseudo-Fibonacci numbers un are defined by u1 = 1, u2 = 4 and un+2 = un+1 + un.
A number of the form 3s2, where s is an integer, is called a one-third square. Show that u0 = 3
and u−4 = 12 are the only one-third squares in the sequence.
Solution by the Proposer

Assume that un = 3x2. The proof is achieved in three stages.
(a) Assume that n ≡ 1, 4, 6,−3,−2 (mod 14), n ≡ 2, 5, 10 (mod 28) and n ≡ −9, 19 (mod 42).
In this case, using congruence (11) of [1], we obtain un ≡ u1, u4, u6, u−3, u−2 (mod L7),
un ≡ ±u2,±u5,±u10 (mod L14), and un ≡ u−9, u19 (mod L21), respectively, so that un ≡
30, 9,−6, 51,−24 (mod 29), un ≡ ±285,∓267,±438 (mod 281) and un ≡ 291, 117 (mod 211).
In all these cases, the equation becomes x2 ≡ 10, 3,−2, 17,−8 (mod 29), x2 ≡ ±95,∓89,±146
(mod 281), and x2 ≡ 97, 39 (mod 211), all of which are impossible.
(b) Assume that n ≡ −1, 3, 7, 8, 9 (mod 14), n ≡ 7, 11 (mod 16), n ≡ 14 (mod 28), and
n ≡ −1,−13, 3 (mod 48). In this case, using congruence (12) of [1], we find that un ≡
±u−1,±u3,±u7,±u8,±u9 (mod F7), un ≡ u7, u11 (mod F8), un ≡ u14 (mod F14) and un ≡
u−1, u−13, u3 (mod F24), respectively, so that un ≡ ±24,±18,±24,±60,±6 (mod 13), un ≡
9, 240 (mod 7), un ≡ 1050 (mod 13), and un ≡ 21,−852,−18 (mod 23). In all these cases,
the equation becomes x2 ≡ ±8,±6,±8,±20,±2 (mod 13), x2 ≡ 3, 80 (mod 7), x2 ≡ 350
(mod 13), and x2 ≡ 7,−284,−6 (mod 23), all of which are impossible.
(c) We finally show that the given equation is impossible if n = −4 + 2tr or n = 2tr, where
r is odd and t ≥ 3 is a positive integer. By (11) of [1], in these cases we have un ≡ −u−4
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(mod L2t−1) and un ≡ −u0 (mod L2t−1). Hence, un ≡ −12,−3 (mod L2t−1), which leads to
x2 ≡ −4,−1 (mod L2t−1), which is impossible because L2t−1 ≡ 3 (mod 4). The only cases
which are left are n = −4, 0 for which un = 12, 3, which are one-third squares.

1. A. Eswarathasan, “On Square Pseudo-Fibonacci Numbers”, The Fibonacci Quarterly 16.4
(1978): 310–314.
Solution by the Editor

It is not hard to prove that un = (7Fn−1 + Ln−1)/2 holds for all integers n. Putting vn =
(7Ln−1 + 5Fn−1)/2, the formula

v2
n − 5u2

n = (−1)n−1 · 44

is an immediate consequence of the known formula L2
n − 5F 2

n = (−1)n · 4. When 3|un, we get
that 3|(7Fn−1 + Ln−1), and this shows that n ≡ 0, 4 (mod 8). In particular, n − 1 is odd.
Thus, with un = 3x2 and vn = y, we get the diophantine equation y2 = 45x4 − 44. This
reduces to an elliptic curve and its integer solutions (x, y) = (±1,±1), (±2,±26) can be easily
computed with one of the standard packages like magma, PARI, SIMATH, etc.

A Decreasing Sequence

H-601 Proposed by Walther Janous, Ursulinengymnasium, Innsbruck, Austria
(Vol. 41, no. 4, August 2003)

Prove or disprove that the sequence

{ n
√
L2 · . . . · Ln+1

α(n+3)/2

}
n≥1

strictly decreases to its limit 1. Here, α is the golden section.
Solution by V. Mathe, Marseille, France

Let

un =
n
√
L2 · . . . · Ln+1

α(n+3)/2
.

We have

log un =
logL2 + · · ·+ logLn+1

n
− n+ 3

2
logα.

Here, for a positive real number y we use log y for the natural logarithm of y. Since Lk =
αk + βk = αk(1 + (−1/α2)k), where β = (1−

√
5)/2 is the conjugate of α, one gets

log un =
1
n

n+1∑
k=2

log
(

1 +
(
− 1
α2

)k)
. (1)
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Since ∣∣∣ log
(

1 +
(
− 1
α2

)k)∣∣∣ < 1
α2k

,

it follows that the series appearing in the right hand side of equation (1) converges absolutely
as n→∞. Therefore log un tends to zero, and so un tends to 1 as n→∞. We will now show
that the sequence is strictly decreasing. For that purpose, we compute

log un − log un+1 =
logL2 + · · ·+ logLn+1

n(n+ 1)
− logLn+2

n+ 1
+

logα
2

whose sign is the same as the sign of

An = logL2 + · · ·+ logLn+1 − n logLn+2 +
n(n+ 1)

2
logα

=
n+1∑
k=2

log
(

1 +
(
− 1
α2

)k)
− n log

(
1 +

(
− 1
α2

)n+2)
.

We note that, for n ≥ 1,

n+1∑
k=2

log
(

1 +
(
− 1
α2

)k)
≥ log

(
1 +

(
− 1
α2

)2)
+ log

(
1 +

(
− 1
α2

)3)
,

where the last inequality above follows from the inequality

log
(

1 +
(
− 1
α2

)2k)
+ log

(
1 +

(
− 1
α2

)2k+1)
> 0 for k = 1, 2, . . . ,

whose proof is straightforward, together with the inequality log(1 + (−1/α2)2k) > 0, which is
obvious. Therefore, we get

An ≥ log
(

1 +
( 1
α4

)
+ log

(
1− 1

α6

)
− n log

(
1 +

(
− 1
α2

)n+2)
.

If n is odd, we have log(1 + (−1/α2)n+2) < 0, and therefore

An > log
(

1 +
1
α4

)
+ log

(
1− 1

α6

)
> 0.
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Assume now that n is even, and let B = log(1 + 1/α4) + log(1 − 1/α6). Using the inequality
log(1 + x) < x, which holds for all for x > 0, we get

An > B − n

α2(n+2)
.

So, a sufficient condition for An to be positive is

B − n

α2(n+2)
≥ 0,

which is equivalent to

α2n

n
≥ 1
Bα4

Since 1/Bα4 < 1.86, it suffices that α2n ≥ 1.86n, and this last inequality holds for all n ≥ 2.
Thus, the sequence {log un}n≥1 is strictly decreasing to its limit 0.

Also solved by Paul Bruckman.

Please Send in Proposals!
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