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1. INTRODUCTION

We consider the following family of cyclic presentations of groups depending on four
positive integers:

F (r, n, s, p) =< x1, . . . , xn : xixi+p · · ·xi+p(r−1) = xi+s (i = 1, . . . , n) >

where the subscripts are reduced modulo n, and r ≥ 2, n ≥ 2. We also denote in short the above
presentation by F (r, n, s, p) = Gn(x1x1+p · · ·x1+p(r−1)x

−1
1+s) according to notation in [13] and

[16]. This family contains many classes of cyclic presentations of groups, previously considered
by several authors. The groups F (2, n, 2, 1) are the Fibonacci groups F (2, n) = Gn(x1x2x

−1
3 )

introduced by Conway in [9] (see also [10]). The groups F (r, n, r, 1) = Gn(x1x2 · · ·xrx
−1
1+r)

were introduced by Johnson, Wamsley and Wright in [17] (and denoted by F (r, n), r ≥ 2,
n ≥ 3) as a natural generalization of the Fibonacci groups F (2, n) (and in fact they are called
with the same name in the current literature). The groups F (2, n, 1, 2) = Gn(x1x3x

−1
2 ) are the

Sieradski groups introduced in [22] (and denoted by S(n)) (see also [5] for some generalizations
of them). The groups F (r, n, r+k−1, 1) = Gn(x1x2 · · ·xrx

−1
r+k) were defined and algebraically

studied by Campbell and Robertson in [1] (and denoted by F (r, n, k)) for any r ≥ 2, n ≥ 3,
and k ≥ 1. Obviously, they represent further generalizations of the Fibonacci groups F (r, n).
The groups F (2, n, 1, p) = Gn(x1x1+px

−1
2 ) are the Gilbert–Howie groups defined in [11], and

denoted by H(n, p). A natural generalization of them, that is, F (2, n, s, p) = Gn(x1x1+px
−1
1+s),

was considered in [6], and denoted by Gn(p, s). Obviously, we have Gn(2, 1) = S(n) and
Gn(1, 2) = F (2, n). In this paper we study algebraic systems, or briefly algebras, which are
groups with an additional unary operation satisfying certain laws. These laws are directly
suggested by the relators of the cyclically presented groups F (r, n, s, p). More precisely, in
addition to the group laws (we use notation x · y, x−1, and e for the product, inverse, and unit
element, respectively) there is an unary operation φ (written as a right–hand operation) which
satisfies the following properties:

(x · y)φ = xφ · yφ
x−1φ = (xφ)−1

eφ = e

(1.1)

xφs = xφp(r−1) · xφp(r−2) · . . . · xφp · x (1.2)
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and
xφn = x. (1.3)

The laws in (1.1) say that φ is a morphism, and the first of them is well-known to imply
the other two. Law (1.2) arises by taking the inverse relations of F (r, n, s, p)

x−1
i+p(r−1)x

−1
i+p(r−2) · · ·x

−1
i+px

−1
i = x−1

i+s

and setting ai = x−1
i to get

ai+p(r−1)ai+p(r−2) · · · ai+pai = ai+s.

Law (1.3) derives from the fact that the group F (r, n, s, p) (and its abelianization) has an
obvious automorphism θ which permutes cyclically the generators, i.e., aiθ = ai+1 (subscripts
mod n). The operation φ imitates the action of θ (and, in particular, it is of order n), not
only on the generators, but on all elements of the group. This gives some restrictions on the
groups underlying the algebras considered in this paper. Let us denote the variety of algebras
defined by laws (1.1)–(1.3) as V(r, n, s, p). These varieties of Fibonacci type generalize those
considered in [14], [15], [18] and [19], so the present note can be considered as a sequel to the
quoted papers. We shall study some properties of the underlying groups of monogenic free
algebras in these varieties, and discuss connections between their orders and the Fibonacci and
Lucas sequences.

2. THE VARIETIES V(2, n, s, p)

Theorem 2.1: If A is an arbitrary algebra in the variety V(2, n, s, p), then the underlying
group G is abelian. The group underlying the monogenic (that is, one–generator) free algebra
of V(2, n, s, p) is isomorphic to the abelianization of the cyclically presented group Gn(p, s) (in
the notation of [6]).

Proof: Laws (1.1) and (1.2) imply

(x · y)φs = (x · y)φp · x · y = xφp · yφp · x · y

and
(x · y)φs = xφs · yφs = xφp · x · yφp · y.

Equating these formulae and simplyfing xφp on the left and y on the right, we get yφp · x =
x · yφp. Now we set z = yφp, and note that z ranges with y over the whole carrier of the
algebra A (since φp is an automorphism by (1.3)). Then we obtain z · x = x · z, that is, the
underlying group G is abelian. The proof of the second part of the statement is the same given
in [18] for the variety V(2, n, 2, 1) (denoted by V

=
(n) in that paper). We briefly report it to

make the reading clear. Suppose thatA is monogenic, i.e., it is generated, as algebra, by a single
element, a say. Then the underlying group G is generated, as group, by the elements a0, . . . ,
an−1, where ai = aφi by (1.3) (here a0 = a as usual). Law (1.2) gives relations ai+s = ai+pai

(subscripts mod n). Thus, G satisfies the defining relations of the group Gn(p, s) in terms of
generators. This implies that G is an epimorphic image of the abelianization of Gn(p, s) (note
that G is abelian). The action of φ on the abelianized group, also denoted by the same symbol,
is that induced by the automorphism θ of Gn(p, s) permuting cyclically the generators. So,
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this action satisfies laws (1.1) and (1.3). It remains to show that law (1.2) is satisfied in the
abelianized group not only by the generators, but by all elements of the group. This follows
immediately from the commutative law. In fact, if (1.2) holds for two arbitrary elements, g
and h say, then we have

(g · h)φs = gφs · hφs = gφp · g · hφp · h = gφp · hφp · g · h = (g · h)φp · (g · h)

and
(g−1)φs = (gφs)−1 = (gφp · g)−1 = g−1 · (gφp)−1 = (g−1)φp · g−1

hence (1.2) holds for products and inverses, and then it holds throughout the group.
We recall some algebraic properties of the groups Gn(p, s) and their abelianizations. The

structure of the abelianization of the Fibonacci group F (2, n) = Gn(1, 2) was described in [18],
and we shall recall it in Section 5 to study relations with the Fibonacci and Lucas sequences.
The following result was proved in [7].
Theorem 2.2: The abelianization of the group Gn(p, s) is infinite if and only if n ≡ 0 (mod
6), p+ s ≡ 3 (mod 6), and 3p ≡ 0 (mod 6).

For s = 1, Gn(p, s) is the Gilbert–Howie group H(n, p) = Gn(x1x1+px
−1
2 ). So Theorem

2.2 immediately implies that H(n, p) has infinite abelianization if and only if n ≡ 0 (mod 6)
and p ≡ 2 (mod 6). This is a well-known result, proved by Odoni in [21]. Moreover, the
abelianization of H(n, p) is trivial if and only if either gcd(n, 6) = 1 and p ≡ 1 or 2 (mod n)
or gcd(n, 6) > 1 and p ≡ 1 (mod n) (see [21], Theorem 2). In particular, for p = 2, the group
Gn(2, 1) is the Sieradski group S(n) = Gn(x1x3x

−1
2 ). The structure of the abelianized group

of S(n) was completely determined in [16] (where the group S(n) was denoted by Kn).

3. THE VARIETIES V(3, n, s, p)

Theorem 3.1: If A is an arbitrary algebra in the variety V(3, n, s, p), then the underlying group
G is abelian. The group underlying the monogenic free algebra of V(3, n, s, p) is isomorphic to
the abelianization of F (3, n, s, p).

Proof: Law (1.2) becomes
xφs = xφ2p · xφp · x. (3.1)

We apply (3.1) to a product x · z, and obtain

(x · z)φs = (x · z)φ2p · (x · z)φp · x · z

hence
xφs · zφs = xφ2p · zφ2p · xφp · zφp · x · z (3.2)

by (1.1). Applying (3.1) to x and z separately, and multiplying, we get

xφs · zφs = xφ2p · xφp · x · zφ2p · zφp · z. (3.3)

Equating (3.2) and (3.3) and cancelling xφ2p on the left and z on the right, we obtain

xφp · x · zφ2p · zφp = zφ2p · xφp · zφp · x. (3.4)
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Firstly, we put z = xφ−p, and obtain, after cancelling xφp on the left and x on the right,

x · xφp = xφp · x. (3.5)

Secondly, we put y = zφp in (3.4) and note that y ranges with z over the whole carrier of our
algebra (since φp is an automorphism by (1.3)). Then we have

yφp · xφp · y · x = xφp · x · yφp · y

hence
(y · x)φp · y · x = (xφp · x) · (yφp · y). (3.6)

Now we define a new operator ψ by setting xψ = xφp · x. Then (3.6) says that ψ is an
antimorphism, i.e., (y · x)ψ = xψ · yψ. Then ψ2 is a morphism. Now we can express xψ2 in
terms of φ as follows:

xψ2 = (xψ)ψ = (xφp · x)ψ
= (xφp · x)φp · (xφp · x)
= xφ2p · xφp · x · xφp

= xφs · xφp

where we have used (3.1) and (3.5). Applying ψ2 to a product x · z yields

(x · z)ψ2 = (x · z)φs · (x · z)φp = xφs · zφs · xφp · zφp. (3.7)

Since ψ2 is a morphism, we also have

(x · z)ψ2 = xψ2 · zψ2 = xφs · xφp · zφs · zφp. (3.8)

Equating (3.7) and (3.8) and cancelling xφs on the left and zφp on the right, we obtain
zφs · xφp = xφp · zφs. We note that zφs and xφp range with z and x, respectively, over the
whole carrier of our algebra. This gives the commutative law proving the first part of the
statement. Now the second part of the statement can be proved exactly as done in the proof
of Theorem 2.1, so we omit it.

4. THE VARIETIES V(r, n, s, p)

In this section we shall assume that r ≥ 4. Then there are non-abelian groups that underly
algebras in the variety V(r, n, s, p) (see Theorem 3 of [19] for the case s = r and p = 1). We
show now that, under certain conditions on the parameters, the free one–generator algebras
of V(r, n, s, p) turn out to be abelian, and have the abelianizations of F (r, n, s, p) as their
underlying groups. More precisely, we have the following result:
Theorem 4.1: If n is coprime with p+ s− pr, then the group underlying the monogenic free
algebra of the variety V(r, n, s, p) is abelian, and isomorphic to the abelianized group A(r, n, s, p)
of F (r, n, s, p).

Proof: We apply φp to both sides of (1.2) to get

xφp+s = xφpr · xφp(r−1) · . . . · xφ2p · xφp. (4.1)
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Then we have
xφp+s · x = xφpr · xφp(r−1) · . . . · xφp · x

hence
xφp+s · x = xφpr · xφs. (4.2)

Now we evaluate (xφp · y)φs by using (1.2) again, with xφp · y and then y · x in place of x.
Then we have

(xφp · y)φs = (xφp · y)φp(r−1) · (xφp · y)φp(r−2) · . . . · (xφp · y)

= xφpr · yφp(r−1) · xφp(r−1) · yφp(r−2) · . . . · xφp · y

= xφpr · (y · x)φp(r−1) · (y · x)φp(r−2) · . . . · (y · x)φp · (y · x) · x−1

= xφpr · (y · x)φs · x−1

= xφpr · yφs · xφs · x−1

hence
xφp+s · yφs = xφpr · yφs · xφs · x−1. (4.3)

Setting y = xφp, we get

xφp+s · xφp+s · x = xφpr · xφp+s · xφs.

Using (4.2) and cancelling xφs on the right gives

xφp+s · xφpr = xφpr · xφp+s

or, equivalently,
xφp+s−pr · x = x · xφp+s−pr. (4.41)

We now proceed by induction, and consider the laws

xφj(p+s−pr) · x = x · xφj(p+s−pr) (4.4j)

and
xφj(p+s−pr) · xφp+s−pr = xφp+s−pr · xφj(p+s−pr) (4.5j)

for any j ≥ 0. Formula (4.41) has just been proved, and (4.51) is trivially satisfied. Applying
φp+s−pr to (4.4j) gives (4.5j+1). To prove (4.4j+1) we apply (4.4j) to xφp+s−pr · x in place of
x. We get

(xφp+s−pr · x)φj(p+s−pr) · xφp+s−pr · x = xφp+s−pr · x · (xφp+s−pr · x)φj(p+s−pr).

Thus we have

xφ(j+1)(p+s−pr) · xφj(p+s−pr) · xφp+s−pr · x = xφp+s−pr · x · xφ(j+1)(p+s−pr) · xφj(p+s−pr).
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Applying (4.5j) and (4.5j+1) we shift xφp+s−pr on the left hand side to the left and cancel it
to get

xφ(j+1)(p+s−pr) · xφj(p+s−pr) · x = x · xφ(j+1)(p+s−pr) · xφj(p+s−pr).

Now we use (4.4j) to shift xφj(p+s−pr) to the right on the left hand side. Then we can cancel
it, and obtain

xφ(j+1)(p+s−pr) · x = x · xφ(j+1)(p+s−pr)

which is (4.4j+1). So we have proved by induction the validity of (4.4j) and (4.5j) for all
positive j. Given arbitrary integers k and ` with k > `, we apply φ`(p+s−pr) to (4.4k−`) to get

xφk(p+s−pr) · xφ`(p+s−pr) = xφ`(p+s−pr) · xφk(p+s−pr). (4.6)

As (4.6) is symmetric in k and ` and the case k = ` is trivial, we have proved the following
result:
Lemma 4.1: In any variety V(r, n, s, p), law (4.6) is valid for arbitrary integers k and `.

Suppose now A is a monogenic free algebra in V(r, n, s, p). Then its underlying group G
is generated, as group, by the set {aφj : j ∈ Zn} by (1.3). So (4.6) implies that G is abelian if
gcd(p+ s− pr, n) = 1.

In [7] there were determined necessary and sufficient conditions for the parameters under
which the abelianization of F (r, n, s, p) is infinite.
Theorem 4.2: The abelianized group A(r, n, s, p) of F (r, n, s, p) is infinite if and only if there
exists m ∈ Z, m > 1 such that m divides n, but it does not divide p, and either p(1 − r) ≡ 0
(mod m) and s ≡ 0 (mod m) or p(r+ 1) ≡ 0 (mod m) and p+ s ≡ m/2 (mod m), with m even
in the second case.

For p = 1, Theorem 4.2 implies that the abelianized group of the Campbell–Robertson
group F (r, n, s) = Gn(x1x2 · · ·xrx

−1
1+s), where r ≥ 2, n ≥ 3 and s ≥ 1, is infinite if and only

if there exists m ∈ Z, m > 1, m\n such that either s ≡ 0 (mod m) and r ≡ 1 (mod m) or
s+ 1 ≡ m/2 (mod m) and r ≡ −1 (mod m), with m even in the second case.

We complete the section with further computations. We deduce from (4.2) the law

(x−1 · xφp+s−pr)φpr = x−1φpr · xφp+s = xφs · x−1. (4.7)

This implies that gφp+s−pr = g is equivalent with gφs = g for any element g of the carrier of
an algebra in V(r, n, s, p). So we have
Lemma 4.2: An element g of the carrier of an algebra in V(r, n, s, p) is fixed by φs if and
only if g is fixed by φp+s−pr. In particular, the varieties V(r, s, s, p) and V(r, p + s − pr, s, p)
coincide.

Now we rewrite (4.3) in the form

(xφpr)−1 · xφp+s · yφs = yφs · xφs · x−1.

Using (4.7) we obtain

(x−1 · xφp+s−pr)φpr · yφs = yφs · (x−1 · xφp+s−pr)φpr.

Applying φ−pr yields

(x−1 · xφp+s−pr) · yφs−pr = yφs−pr · (x−1 · xφp+s−pr).
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We put z = yφs−pr and note that z ranges with y over the whole carrier of our algebra. This
gives

(x−1 · xφp+s−pr) · z = z · (x−1 · xφp+s−pr). (4.8)

This law says that x−1 ·xφp+s−pr commutes with all elements, i.e., it is central in the underlying
group G of an algebra A in V(r, n, s, p). The set {g−1 · gφp+s−pr : g ∈ G} generates a subgroup
H of G. The group H underlies a subalgebra B of A. In fact, B is the kernel of the natural
epimorphism from A onto the algebra A′ with underlying group G′ = G/H, where φ acts on
G′ with the additional law xφpr−p−s = x. So we have proved (use (4.8))
Lemma 4.3: The subgroup H of G lies in the centre of G. If n does not divide p + s − pr,
then the underlying group of an arbitrary algebra in V(r, n, s, p) has a non–trivial centre.

To complete the section we treat a special case given by conjugation. Let G be a group
underlying an algebra A in V(r, n, s, p), and suppose that the operator φ on G is given by the
conjugation with a fixed element g ∈ G, i.e., φ(x) = g · x · g−1, for any x ∈ G. Of course, φ
satisfies the laws in (1.1), and it satisfies law (1.3) if and only if gn belongs to the centre of G.
Substituting the relations φi(x) = gi ·x ·g−i in law (1.2) yields gs−p(r−1) ·x ·g−s−p = (x ·g−p)r

for any x ∈ G. If we put x = g, then the above relation implies that gr−1 = e, i.e., the order of
g divides r− 1. In particular, if the centre of G is trivial and n is coprime with r− 1, then the
action of φ is trivial. Let now G be a subgroup of GL(2; C) which contains at least one matrix

X =
(
u v
w z

)
with wv 6= 0. Let φ be the conjugation on G with the matrix g =

(
λ 0
0 λ−1

)
,

where λ is a primitive n–th root of unity (hence n divides r − 1). Then there is an algebra in
V(r, n, s, p) whose underlying group is G. Furthermore, one can prove the following result.
Proposition 4.4: If G ⊂ GL(2; C) and φ are as above, then n divides 4s. If n is coprime with
4s, then the action of φ is trivial, hence Xr−1 = I2 for any X ∈ G.

5. CONNECTIONS WITH THE FIBONACCI AND LUCAS SEQUENCES

The structure of the abelianization A(2, n) of the Fibonacci group F (2, n) is well–known,
and it is strictly related to the Fibonacci and Lucas sequences {Fn} and {Ln} (see for exam-
ple [18]). The following familiar relations describe some connections between the Fibonacci
numbers Fn and the Lucas numbers Ln (see for example [2] and [20]):

L2g = L2
g − 2(−1)g and F2g = FgLg (5.1)

L−n = (−1)nLn and F−n = (−1)n+1Fn (5.2)

2Lm+n = LmLn + 5FmFn (5.3)

Ln = Fn−1 + Fn+1 (5.4)

L2gt+m ≡ ±L2g+m (mod L2g) (5.5)

for any g, m, n, and t integers, t odd (here F0 = 0 and L0 = 2). If m = n, then (5.3) becomes
2L2n = L2

n + 5F 2
n . Substituting the first relation in (5.1) yields

2L2
n − 4(−1)n = L2

n + 5F 2
n ,
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hence
L2

n = 5F 2
n + 4(−1)n (5.6)

(see for example [20]). By [18] (see also [4]) the order of A(2, n) is given by

gn = Fn−1 + Fn+1 − 1− (−1)n = Ln − 1− (−1)n

for any n ≥ 1. Thus A(2, n) has order Ln for n odd, and Ln − 2 for n even. The group
A(2, n) is isomorphic to the direct product of two cyclic groups of orders h and k, where h
divides k, i.e., A(2, n) ∼= Zh ⊕ Zk with hk = gn. If gcd(n, 6) = 1, then h = 1 and k = gn. If
n ≡ 3 (mod 6), then h = 2 and k = 1

2gn = 1
2 (Fn−1 + Fn+1) = 1

2Ln. If n ≡ 2 (mod 4), then
h = k =

√
gn =

√
Ln − 2 = Ln

2
= Fn

2−1 + Fn
2 +1 by (5.1) and (5.4). If n ≡ 0 (mod 4), then

k = 5h and h =
√

1
5gn =

√
1
5 (Ln − 2) = Fn

2
by (5.1) and (5.6). The following table, related

to that shown in [18], summarizes the above results in terms of the Lucas numbers.

n (mod 12) h k

0
√

1
5 (Ln − 2)

√
5(Ln − 2)

1 1 Ln

2 Ln
2

Ln
2

3 2 1
2Ln

4
√

1
5 (Ln − 2)

√
5(Ln − 2)

5 1 Ln

6 Ln
2

Ln
2

7 1 Ln

8
√

1
5 (Ln − 2)

√
5(Ln − 2)

9 2 1
2Ln

10 Ln
2

Ln
2

11 1 Ln

Let now A(r, n, s, p) be the abelianization of the cyclically presented group F (r, n, s, p).
The polynomial fw(t) associated with the cyclic presentation is fw(t) =

∑r−1
i=0 t

pi− ts. By [16]
and [21] it follows that A(r, n, s, p) is infinite if and only if fw(t) vanishes on an n–th root of
unity. Otherwise, the order of A(r, n, s, p) is given by |A(r, n, s, p)| = (r−1)|

∏n
i=2(

∑r−1
j=0 ω

pj
i −

ωs
i )|, where ω1 = 1, ω2, . . . , ωn are the distinct n–th roots of unity (note that fw(1) = r− 1).

The following questions arise in a natural way from the arguments discussed above.
Open questions. Determine the complete structure of the groups A(r, n, s, p) in the finite

case, and find formulae which express their orders in terms of the parameters. For which values
of the parameters, do these formulae involve sequences of numbers related to Fibonacci and
Lucas sequences? For which values of the parameters, is A(r, n, s, p) cyclic?

Partial results in this direction are given in the next proposition which easily extends
Corollaries 3 and 4 of [12] (see also [15]) to our case.
Proposition 5.1: Suppose that p is coprime with n. Then we have
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(1) If s ≡ p (mod n) and pr ≡ p (mod n), then |A(r, n, s, p)| = (r − 1)n.
(2) If s ≡ −p (mod n) and pr ≡ −p (mod n), then |A(r, n, s, p)| = (r − 1)2n−1.
(3) If pr ≡ 2p (mod n) and either s ≡ p (mod n) or s ≡ 0 (mod n), then

|A(r, n, s, p)| = r − 1.

(4) If s ≡ −2p (mod n) and pr ≡ −2p (mod n), then |A(r, n, s, p)| = 1
3 (r − 1)(2n − (−1)n).
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