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1. INTRODUCTION

Consider the Riccati differential equation

f(x)G′(x) = f0(x)G2(x) + f1(x)G(x) + f2(x). (1)

For f2(x) ≡ 0 this reduces to a special Bernoulli equation (with exponent 2) which will be
treated separately. For the history of such eqs. see [9], ch.I, 1.1. If f0(x) does not vanish we
speak of the non-degenerate case, and

G2(x) = α(x)G′(x)− β(x)G(x)− γ(x), (2)

with α(x) = f(x)/f0(x), β(x) = f1(x)/f0(x), and γ(x) = f2(x)/f0(x). Let G(x) generate the
number sequence {Gn}∞0 , i.e. G(x) =

∑∞
n=0Gnx

n. Because G2(x) is the generating function

for the convolution of the sequence {Gn}∞0 with itself, i.e. of G(1)
n :=

∑n
k=0GkGn−k, one

can use eq. 2 in order to express the convolution numbers G(1)
n in terms of {Gk}n+1

0 and the
numbers {αk}n0 , {βk}n0 , and γn, which are generated by the functions α(x), β(x), and γ(x),
respectively, as follows.

G(1)
n =

n∑
q=0

((n+ 1− q)Gn+1−qαq −Gn−qβq)− γn,

=
n∑

q=0

((q + 1)Gq+1αn−q −Gqβn−q)− γn. (3)

The kth order convolution sequence {G(k)
n }∞n=0 is generated by Gk+1(x), and can be obtained

recursively if one first writes Gk+1(x) = Gk−1(x)G2(x) and then employs Riccati eq. 2:

Gk+1(x) =
(
α(x)

1
k

d

dx
− β(x)

)
Gk(x)− γ(x)Gk−1(x) (4)

for k ∈ N. This yields in terms of the expansion coefficients, from Gk+1(x) =:
∑∞

n=0G
(k)
n xn,

G(k)
n =

n∑
q=0

(
1
k

(q + 1)G(k−1)
q+1 αn−q −G(k−1)

q βn−q −G(k−2)
q γn−q

)
(5)

for k ∈ N, with G
(−1)
q := δq,0 (Kronecker symbol) and G

(0)
q = Gq.

As is well-known, Riccati eq. 2 can be transformed into a homogeneous second order
differential equation of the type (we use α(x) 6= 0)

α(x)H ′′(x) + (α′(x)− β(x))H ′(x) + (γ(x)/α(x))H(x) = 0. (6)
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This transformation is accomplished by

G(x) = −α(x)(ln H(x))′ or H(x) = exp

(
−
∫
G(x)
α(x)

dx

)
. (7)

Therefore, if a functionH(x) satisfies the differential eq. of type 6 with certain initial conditions
for H(0) and H ′(0) we can use recursion eq. 5 for the kth convolution of the sequence {Gn}∞0
generated by G(x) = −α(x)(ln H(x))′, and α(x), β(x), and γ(x) generate the coefficients in
eq. 5.

In the special Bernoulli case, when γ(x) ≡ 0, and f(x) 6= 0 and α(x) 6= 0, the eq.

G′(x) =
f1(x)
f(x)

G(x) +
f0(x)
f(x)

G2(x) = (β(x)G(x) +G2(x))/α(x), (8)

can be transformed into an inhomogeneous first order linear differential eq. for the inverse of
G(x); i.e. H(x) := 1/G(x) satisfies

α(x)H ′(x) + β(x)H(x) = −1, (9)
with the solution

H(x) =
1

G(x)
= eF (x)

[
C −

∫
e−F (x)

α(x)
dx

]
, (10)

where C is an integration constant, and F (x) := −
∫

(β(x)/α(x))dx.
Therefore, if H(x) satisfies a differential equation of type 9 with a certain initial condition

for H(0) we can use recursion eq. 5, with γn−q ≡ 0, for the kth convolution of the sequence
{Gn}∞0 generated by G(x) = 1/H(x). α(x) and β(x) generate the remaining coefficients in
eq. 5.

¿From this set-up we do not gain direct information about convolutions of the sequence
of numbers generated by the functions H(x) in both cases. This method becomes particu-
larly useful if the coefficient functions α(x), β(x) and γ(x) are simple, for example if they are
polynomials.

In this paper we concentrate on examples of Riccati equation 8 of the special Bernoulli
type. It is shown that the generalized Fibonacci and corresponding Lucas numbers are gener-
ated by functions which satisfy such a Riccati equation. We discuss the resulting expressions
for the kth convolution of these number sequences. At the end we extend this method to the
so-called generalized p-Fibonacci numbers which appeared in a recent paper [6].

2. SUMMARY

The generating function for the generalized Fibonacci numbers {Fn(a, b)}∞0 , defined by
the three term recurrence relation

Fn(a, b) = aFn−1(a, b) + bFn−2(a, b), F0(a, b) = 0, F1(a, b) = 1, (11)

with given real a 6= 0 and b 6= 0, is well-known. For arbitrary a and b, Fn(a, b) can be
considered as a polynomial in two variables. If we introduce the numbers, or polynomials,
Un(a, b) := Fn+1(a, b) we have from the recursion with input U0(a, b) = 1 and U1(a, b) = a
(or U−1(a, b) = 0)

U(a, b;x) :=
∞∑

n=0

Un(a, b)xn =
1

1− ax− bx2
. (12)
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Similarly, for the generalized Lucas numbers {Ln(a, b)}∞0 which satisfy the same recursion
eq. 11 but with inputs L0(a, b) = 2, L1(a, b) = a, we find, with Vn(a, b) := Ln+1(a, b)/a,
remembering that a 6= 0,

V (a, b;x) :=
∞∑

n=0

Vn(a, b)xn =
1 + 2bx/a

1− ax− bx2
. (13)

The input is now V0(a, b) = 1 and V1(a, b) = (a2 + 2b)/a (or V−1(a, b) = 2/a).
These (ordinary) generating functions can also be written in terms of the characteristic

roots corresponding to recursion relation eq. 11

λ± ≡ λ±(a, b) :=
1
2

(a±
√
a2 + 4b) (14)

as follows.

U(a, b;x) =
1

x(λ+ − λ−)

(
1

1− λ+x
− 1

1− λ−x

)
, (15)

V (a, b;x) =
1

(λ+ + λ−)

(
λ+

1− λ+x
+

λ−
1− λ−x

)
. (16)

The corresponding Binet forms of the generated numbers are, in the non-degenerate case
λ+ 6= λ−, i.e. D(a, b) := a2 + 4b 6= 0,

Un(a, b) =
λn+1

+ − λn+1
−

λ+ − λ−
, (17)

Vn(a, b) =
λn+1

+ + λn+1
−

λ+ + λ−
. (18)

In the degenerate case we have

Un(a) := Un

(
a,−a

2

4

)
= (n+ 1)

(a
2

)n

, (19)

Vn(a) := Vn

(
a,−a

2

4

)
=
(a

2

)n

. (20)

A sum representation of these polynomials is obtained by expanding the generating functions.

Un(a, b) =
bn

2 c∑
l=0

(
n− l
l

)
an−2lbl, (21)

Vn(a, b) =
bn+1

2 c∑
l=0

n+ 1
n+ 1− l

(
n+ 1− l

l

)
an−2lbl. (22)
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This result for Un(a, b) follows also from a combinatorial interpretation of the recurrence
relation, and the one for Vn(a, b) is also due to the Girard-Waring formula in its simplest
version (for this cf. [4], [3], also for original refs.).

The generating functions eq. 12 (or eq. 15) and eq. 13 (or eq. 16) are found to be the
unique solutions of Riccati eqs. (simultaneously a special type of Bernoulli eq.) of the type
shown in eq. 8. To be precise we have, identically in a and b,

(a+ 2bx)
∂

∂x
U(a, b;x) + 4bU(a, b;x)− (a2 + 4b)U2(a, b;x) = 0, (23)

with the initial condition U(a, b; 0) = 1. Similarly,

(1 + 2
b

a
x)2

∂

∂x
V (a, b;x) + 2

b

a
(1 + 2

b

a
x)V (a, b;x)− (a+ 4

b

a
)V 2(a, b;x) = 0, (24)

with the initial condition V (a, b; 0) = 1.
Hence the coefficient functions from eq. 9 are at most first degree polynomials, namely

α(x) ≡ α(a, b;x) = (a+ 2bx)/(a2 + 4b) and β(x) ≡ β(a, b;x) = −4b/(a2 + 4b) in the Fibonacci
case, and α(x) ≡ α(a, b;x) = (1 + 2bx/a)2/(a + 4b/a) and β(x) ≡ β(a, b;x) = −2(b/a)(1 +
2bx/a)/(a+ 4b/a) in the Lucas case, provided a 6= 0 and a2 + 4b 6= 0.

The degenerate case D(a, b) := a2 + 4b = 0, for which the above given differential eqs.
become linear, will be considered separately. This case corresponds to vanishing f0(x) in
section 1.

¿From the general results given in section 1 the generating functions for the kth convolution
of these sequences satisfy

Uk+1(a, b;x) =
1

(a2 + 4b)k

(
(a+ 2bx)

∂

∂x
+ 4kb

)
Uk(a, b;x), (25)

and

V k+1(a, b;x) =
a

(a2 + 4b)k

(
(1 + 2

b

a
x)2

∂

∂x
+ 2k

b

a
(1 + 2

b

a
x)
)
V k(a, b;x). (26)

This implies, from eq. 5, that the kth convolution U
(k)
n , defined by Uk+1(a, b;x) =:∑∞

n=0 U
(k)
n (a, b)xn can be expressed in terms of the k − 1st one according to

U (k)
n (a, b) =

1
k(a2 + 4b)

(
a(n+ 1)U (k−1)

n+1 (a, b) + 2b(n+ 2k)U (k−1)
n (a, b)

)
, (27)

with input U (0)
n (a, b) = Un(a, b), and similarly

V (k)
n (a, b) =

1
ka(a2 + 4b)

(
(n+ 1)a2V

(k−1)
n+1 (a, b) + 2ab(2n+ k)V (k−1)

n (a, b)

+4b2(n+ k − 1)V (k−1)
n−1 (a, b)

)
, (28)
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with input V (0)
n (a, b) = Vn(a, b). The formula given in eq. 27 has been found earlier in [1] (p.

202, III and p. 213, eq. (30)) without using the defining Riccati eq. for U(a, b;x). The
notations have to be translated with the help of F (k)

n =̂U (k−1)
n , a1=̂a, and a2=̂b.

For example, the convolution of {Vn(a, b)}∞0 with itself (k = 1) becomes, after use of
recursion eq. 11

V (1)
n (a, b) =

1
a(a2 + 4b)

([
a2(n+ 1) + 4bn

]
Vn+1(a, b) + 2baVn(a, b)

)
. (29)

For a = b = 1 one recovers well-known formulae for the first convolutions of ordinary Fibonacci,
resp. Lucas numbers (e.g. [7], p. 183, eqs. (98) and (99) (with corrected Ln−1 → Ln−i)). To

see this, observe that U (1)
n (1, 1) = F

(1)
n+2 and V

(1)
n (1, 1) = L

(1)
n+2 − 4Ln+2.

F (1)
n = U

(1)
n−2(1, 1) =

1
5

((n− 1)Fn + 2nFn−1) =
1
5

(nLn − Fn), (30)

L(1)
n = V

(1)
n−2(1, 1) + 4Ln =

1
5

((5n− 9)Ln + 2Ln−1) + 4Ln = (n+ 2)Ln + Fn. (31)

We note, in passing, a sum representation of these convolutions obtained from the expansion
of the generating functions which is valid for k ∈ N0.

U (k)
n (a, b) =

bn
2 c∑

l=0

(
k + n− l

k

)(
n− l
l

)
an−2lbl, (32)

V (k)
n (a, b) =

min(n,k+1)∑
p=0

2p

(
k + 1
p

) n∑
l=p

(
n− l + k

k

)(
n− l
l − p

)
an−2lbl. (33)

Before discussing iteration of recursion relations 27 and 28 we state results for the degenerate
case D(a, b) := a2 + 4b = 0. Riccati eqs. 23 and 24 collapse to linear differential eqs. for
U(a;x) := U(a,−a2/4;x) and V (a;x) := V (a,−a2/4;x)

(1− a

2
x)

∂

∂x
U(a;x) = aU(a;x), U(a; 0) = 1, (34)

(1− a

2
x)

∂

∂x
V (a;x) =

a

2
V (a;x), V (a; 0) = 1. (35)

For the last eq. x 6= 2/a was assumed. Because the solutions to these eqs. imply

∂2

∂x2
U(a;x) =

3
2
a2U2(a;x),

∂

∂x
V (a;x) =

a

2
V 2(a;x), (36)

235



RICCATI MEETS FIBONACCI

the corresponding first (k = 1) convolutions of these numbers Un(a) := Un(a,−a2/4) and
Vn(a) := Vn(a,−a2/4) are given by

U (1)
n (a) =

2
3a2

(n+ 2)(n+ 1)Un+2(a), V (1)
n (a) =

2
a

(n+ 1)Vn+1(a), (37)

with eqs. 19 and 20.
In order to derive the result for the kth convolution we start with identities which follow

from the solutions of eqs. 34 and 35, namely

Uk+1(a;x) =
2

a2k(2k + 1)
∂2

∂x2

(
Uk(a;x)

)
, (38)

V k+1(a;x) =
2
ak

∂

∂x

(
V k(a;x)

)
. (39)

These identities imply for the kth convolutions

U (k)
n (a) =

2
a2k(2k + 1)

(n+ 2)(n+ 1)U (k−1)
n+2 (a), (40)

V (k)
n (a) =

2
ak

(n+ 1)V (k−1)
n+1 (a), (41)

with inputs U (0)
n (a) = Un(a) = (n+ 1)(a/2)n and V

(0)
n (a) = Vn(a) = (a/2)n. See eqs. 19 and

20. The iteration of these eqs. yields the final result, which for k ∈ N0, and in the degenerate
case b = −a2/4, is

U (k)
n (a) =

(
n+ 2k + 1

2k + 1

)(a
2

)n

, (42)

V (k)
n (a) =

(
n+ k

k

)(a
2

)n

. (43)

Thus V (2l+1)
n (a) = U

(l)
n (a), and it suffices to treat V (k)

n (a). For even a these are non-negative
integer sequences. For n, k ∈ N0, V

(k)
n+k(2l) constitutes a convolution triangle of numbers based

on the k = 0 column sequence V
(0)
n (2l) = ln (powers of l). See [5] for these triangles of

numbers.
In the non-degenerate case recursion eq. 27 can be iterated in order to express the kth

convolution of Un(a, b) as linear combination of these numbers according to

U (k)
n (a, b) =

1
k!(a2 + 4b)k

(AUk−1(a, b;n)(n+ 1)aUn+1(a, b) +BUk−1(a, b;n)(n+ 2)bUn(a, b)) ,

(44)
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with certain polynomials AUk−1(a, b;n) and BUk−1(a, b;n) of degree k − 1 in the variable n,
for arbitrary, but fixed, a 6= 0, b 6= 0, and b 6= −a2/4.

The (mixed) recursion relations for these polynomials are deduced from eq. 27, and for
k = 1, 2, . . . , they are

AUk(a, b;n) =a2(n+ 2)AUk−1(a, b;n+ 1) + 2b(n+ 2(k + 1))AUk−1(a, b;n)+
b(n+ 3)BUk−1(a, b;n+ 1), (45)

BUk(a, b;n) =a2(n+ 1)AUk−1(a, b;n+ 1) + 2b(n+ 2(k + 1))BUk−1(a, b;n), (46)

with inputs AU0(a, b;n) = 1 and BU0(a, b;n) = 2.

In eqs. (26), resp. (27), of [1] one can find explicit results for U (k)
n (a, b) for the instances

k = 2, resp. k = 3 (in eq. (26) of this ref. one has to multiply the lhs with 2!, and in the
second line of N of eq. (27) it should read B(2, n+ 1)).

For the case a = 1 = b the triangles of the coefficients of these polynomials can be viewed
under the nrs. A057995 and A057280 in [5]. For a = 2, b = 1 see A058402 and A058403, and
for a = 1, b = 2 A073401 and A073402.

Similarly, iteration of recursion eq. 28 results, with the help of recursion eq. 11, in

V (k)
n (a, b) =

1
k!a(a2 + 4b)k

(AVk(a, b;n)Vn+1(a, b) +BVk(a, b;n)Vn(a, b)) , (47)

with certain polynomials AVk(a, b;n) and BVk(a, b;n) of generic degree k in the variable n,
for fixed a 6= 0, b 6= 0, with b 6= −a2/4.

The (mixed) recursion relations for these polynomials are found from eq. 28, and for
k = 1, 2, . . . , they are

AVk(a, b;n) =a2(n+ 1)AVk−1(a, b;n+ 1) + 2b(2n+ k)AVk−1(a, b;n)+

a(n+ 1)BVk−1(a, b;n+ 1) + 4
b

a
(n+ k − 1)BVk−1(a, b;n− 1), (48)

BVk(a, b;n) =2b(2n+ k)BVk−1(a, b;n)− 4b(n+ k − 1)BVk−1(a, b;n− 1)+

ab(n+ 1)AVk−1(a, b;n+ 1) + 4
b2

a
(n+ k − 1)AVk−1(a, b;n− 1),

(49)

with inputs AV0(a, b;n) = 0 and BV0(a, b;n) = a.
For a = 1 = b the triangles of coefficients of these polynomials in n can be found under

the nrs. A061188 and A061189 in [5]. Observe that BV1(1, 1;n) is accidentally of degree 0.
For a = 2, b = 1 see nrs. A062133 and A062134.

Motivated by a recent paper [6] we consider also the following generalized p-Fibonacci
numbers Un(p; a, b) defined for p ∈ N0 by the generating function

U(p; a, b;x) :=
1

1− ax− bxp+1
=
∞∑

n=0

Un(p; a, b)xn. (50)
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Of course, we assume b 6= 0 and also take a 6= 0. For p = 1 these numbers reduce to the
Un(a, b) treated above, and for p = 0 they become the powers (a+ b)n. U(p; 1, 1;x) appears in
eq. 71 of [2]. The recursion relations are

Un(p; a, b) = aUn−1(p; a, b) + bUn−(p+1)(p; a, b), (51)

with inputs Uj(p; a, b) = aj for j = 0, 1, . . . , p. In order to derive expressions for the kth

convolution of these p-Fibonacci numbers consider first the following Riccati eq. of type 8
satisfied by U(p; a, b;x) written for the non-degenerate case D(p; a, b) := (p+1)p+1b+a(ap)p 6=
0 if p ∈ N, and a+ b 6= 0 if p = 0 (i.e. one puts (ap)p = 1 if p = 0).

U2(p; a, b;x) =
1

(p+ 1)p+1b+ a(ap)p

{
Ap(a, b;x)

∂

∂x
+ b(p+ 1)2Bp−1(a;x)

}
U(p; a, b;x),

(52)with

Ap(a, b;x) = (ap)p + b(p+ 1)xBp−1(a;x), (53)

Bp−1(a;x) = (p+ 1)p−1

p−1∑
i=0

(
ap

p+ 1

)i

xi =
(p+ 1)p − (apx)p

p+ 1− apx
. (54)

Hence, the coefficient functions α(x), resp. β(x) from the general set-up in section 1 are
polynomials of degree p resp. p − 1, namely α(x) ≡ αp(a, b;x) = Ap(a, b;x)/D(p; a, b) resp.
β(x) ≡ βp(a, b;x) = −b(p + 1)2Bp−1(a;x)/D(p; a, b), and γ(x) ≡ 0. For p = 0 one has to
use A0(a, b;x) = 1 and B−1(a;x) = 0. For given non-vanishing a and b these polynomials
Ap(a, b;x), resp. Bp−1(a;x), in the variable x of degree p, resp. p − 1, have therefore the
following explicit form.

Ap(a, b;x) =
p∑

m=0

A(a, b; p,m)xm, Bp−1(a;x) =
p−1∑
m=0

B(a; p− 1,m)xm, (55)

with the coefficients

A(a, b; p,m) =


0 if m > p,

1 if m = 0 and p = 0,
(ap)p if m = 0 and p ≥ 1,

b(p+ 1)p
(

ap
p+1

)m−1

if m ≥ 1,

(56)

B(a; p,m) =

{
0 if p < m or p = −1,

(p+ 2)p
(

a(p+1)
p+2

)m

if p ≥ m ≥ 0.
(57)
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For a = 1 = b these triangles of coefficients can be viewed under the numbers A055858 and
A055864 in [5] where further details may be found.

Even though we cannot compute the integral in the solution eq. 10 of the linear differential
eq. 9, which is equivalent to Riccati eq. 52 for p 6= 0, 1, H(x) = 1− ax− bxp+1 is the unique
solution due to the existence and uniqueness theorem for the linear first order differential eq.
9 with initial value H(p; a, b; 0) = 1.

The result for the first (k = 1) convolution of the numbers Un(p; a, b) which flows from
Riccati eq. 52 is

U (1)
n (p; a, b) =

1
b(p+ 1)p+1 + a(ap)p

p∑
j=0

Cj(n; p; a, b)Un+1−j(p; a, b), (58)

with

Cj(n; p; a, b) =


n+ 1 if p = 0 = j,

(n+ 1)(ap)p if p ≥ 1 and j = 0,

b(p+ 1)p(n+ p+ 2− j)
(

ap
p+1

)j−1

if p ≥ 1 and j = 1, . . . , p.

(59)

The Un(p; a, b) recursion cannot be used to simplify the sum in eq. 58.
This result can now be compared, after putting a = 1 = b, with a different formula for

the same convolution found in [6], eq. (14). For given p ∈ N0 and k = 2, 3, . . . , the recursion
for F (2)

p (k)=̂U (1)
k−2(p; 1, 1) in [6] involves all k−1 terms Fp(n)=̂Un−1(p; 1, 1), for n = 1, . . . , k−1,

whereas our result needs only p + 1 terms for all k. For example, F (2)
3 (7)=̂U (1)

5 (3; 1, 1) is
reduced to six terms involving F3(1)=̂U0(3; 1, 1), . . . , F3(6)=̂U5(3; 1, 1) in [6], but only to four
terms, involving U8(3; 1, 1)=̂F3(9), U7(3; 1, 1)=̂F3(8), . . . , U5(3; 1, 1)=̂F3(6) in eq. 58.

For the kth convolution we use eq. 4 with γ(x) ≡ 0 and the above given functions
αp(a, b;x) and βp(a, b;x). For the non-degenerate case, and for k ∈ N, we have

Uk+1(p; a, b;x) =
1

k (b(p+ 1)p+1 + a(ap)p){
Ap(a, b;x)

∂

∂x
+ kb(p+ 1)2Bp−1(a;x)

}
Uk(p; a, b;x). (60)

For p ∈ N0 the corresponding recursion relation for the kth convolution is (remember that we
put (ap)p = 1 if p = 0)

U (k)
n (p; a, b) =

1
k (b(p+ 1)p+1 + a(ap)p)

p∑
j=0

C
(k)
j (n; p; a, b)U (k−1)

n+1−j(p; a, b). (61)
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with

C
(k)
j (n; p; a, b) =


n+ 1 if p = 0 = j,

(n+ 1)(ap)p if p ≥ 1 and j = 0,

b(p+ 1)p(n+ 1 + k(p+ 1)− j)
(

ap
p+1

)j−1

if p ≥ 1 and j = 1, . . . , p.

(62)
Instead of showing the rather unwieldy formula for the iteration of this recursion relation, after
employing the fundamental recursion eq. 51, we prefer to state the result for the instance
p = 2, k = 2, a = 1 = b, with the notation U

(1)
n (2; 1, 1) ≡ U (1)

n (2) and Un(2; 1, 1) ≡ Un(2):

U (2)
n (2) =

1
2 · 31

(
4(n+ 1)U (1)

n+1(2) + 9(n+ 6)U (1)
n (2) + 6(n+ 5)U (1)

n−1(2)
)

=
1

2 · 312

(
(217n2 + 1425n+ 1922)Un(2) + 2(n+ 2)(62n+ 305)Un−1(2)+

4(n+ 1)(31n+ 143)Un−2(2)) . (63)

The recursion relation eq. 51 has been used twice.
In the degenerate case D(p; a, b) := (p + 1)p+1b + a(ap)p = 0 (where we put (ap)p ≡ 1 if

p = 0) we find for U(p; a, b = b(p; a);x) =: U(p; a;x), where b(p; a) := −pp(a/(p+ 1))p+1, the
linear differential eq.{

Ap(a, b(p; a);x)
∂

∂x
+ b(p; a)(p+ 1)2Bp−1(a;x)

}
U(p; a;x) = 0 (64)

with Bp−1 and Ap taken in explicit form known from eqs. 55 with 57 and 56. For general
p and D(p; a, b) = 0 we cannot say anything about convolutions because we have no suitable
expression for U2(p; a, b;x). Recurrence eq. 51 with depth p+ 1 can be replaced by one with
only depth p. See eq. 65.

In the non-degenerate case we could also consider the other p linear independent (Lucas-
type) sequences defined by recurrence eq. 51 with appropriate inputs, but we will not do this
here.

The remainder of this paper provides proofs for the above given statements.

3. RICCATI EQUATIONS FOR FIBONACCI
AND LUCAS GENERATING FUNCTIONS

Proposition 1: U(a, b;x) defined in eq. 12 is for a2 + 4b 6= 0 equivalent to Riccati eq. 23 with
initial condition U(a, b; 0) = 1.

Proof: a) H(a, b;x) = 1/U(a, b;x) = 1− ax− bx2 satisfies eq. 9 with α(x) ≡ α(a, b;x) =
(a + 2bx)/(a2 + 4b) and β(x) ≡ β(a, b;x) = −4b/(a2 + 4b). Therefore, U(a, b;x) obeys eq. 8
with coincides with eq. 23.
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b) With α(a, b;x) and β(a, b;x) from eq. 23, as given in part a) we can compute the
integral in eq. 10 and determine the constant C from the initial condition. This produces
1/U(a, b;x).
Lemma 1: In the degenerate case U(a;x) := U(a,−a2/4;x) yields the first order linear
differential eq. 34 as well as the second order non-linear differential eq. given as the first of
eqs. 36.

Proof: Elementary.
Note 1: The degenerate case is equivalent to λ+(a, b) = λ (a, b) with the definition of the
characteristic roots of the recursion relation eq. 11 given in eq. 14. We may assume that not
both, a and b, vanish and x 6= 1/λ±(a, b) = −λ∓/b. In each case U(a, b; 0) = 1.
Proposition 2: V (a, b;x), defined in eq. 13 for a 6= 0, is for a2 + 4b 6= 0 equivalent to Riccati
eq. 24 with initial condition V (a, b; 0) = 1.

Proof: Analogous to the proof of Proposition 1.
Lemma 2: In the degenerate case V (a;x) := V (a,−a2/4;x) satisfies the first order linear
differential eq. 35 as well as the first order non-linear differential eq. given as the second of
eqs. 36. In each case V (a, b, 0) = 1.

Proof: Elementary.

4. CONVOLUTIONS OF GENERALIZED FIBONACCI
AND LUCAS SEQUENCES

Because the k+1st power of the (ordinary) generating functions of a sequence generates k-
fold convolutions of this sequence we obtain in the non-degenerate case, a2 +4b 6= 0, according
to the general set-up of section 1, for the generalized Fibonacci resp. Lucas case, expression
eq. 27, resp. eq. 28. For the definition of the kth convolutions U (k)

n (a, b) (similarly of V (k)
n (a, b))

see the line after eq. 26. The first convolutions (k = 1) can be determined in each case from
linear combinations of the two independent original sequences. See eq. 29 for the Lucas case.
For a = 1 = b these formulae are well-known (see section 2 after eq. 29).
Lemma 3: (Recurrence for k-fold convolution, degenerate case):

For b = −a2

4 6= 0 the recurrence formulae for the k-fold convolution of the generalized
Fibonacci, resp. Lucas, sequences are those stated in eqs. 40, resp. 41.

Proof: This statement is equivalent to eq. 25, resp., eq. 26 for the powers of the
corresponding generating functions. They are deduced from the second, resp. first, order
differential eq., given in eqs. 36, which coincides with the k = 1 assertion. To verify the
general k case,
eq. 38 resp. eq. 39, one may use U(a;x) = U(a,−a2

4 ;x) = 1/(1−ax/2)2 from eq. 12, resp.

V (a;x) = V (a,−a2

4 ;x) = 1/(1− ax/2) from eq. 13.
Lemma 4: The explicit form for the k-fold convolution in the degenerate case is given by eq.
42, resp. 43, for the generalized Fibonacci, resp. Lucas, case.

Proof: Iteration of the recurrence eq. 40, resp. eq. 41, with input U (0)
n (a) = Un(a) =

(n+ 1) · (a/2)n, resp. V
(0)
n (a) = Vn(a) = (a/2)n, which originates from the generating

functions U(a,−a2

4 ;x), resp. V (a,−a2

4 ;x).
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Proposition 3: (Iteration of recurrence for k-fold convolutions; non-degenerate Fibonacci
case):

For a2 + 4b 6= 0 the k-fold convolution of the generalized Fibonacci sequence {Un(a, b)}
is expressed as linear combinations of the two independent solutions of recurrence eq. 11 as
given in eq. 44. The coefficient polynomials AUk(a, b;n) and BUk(a, b;n) satisfy the mixed
recurrence relations eqs. 45 and 46.

Proof: If one considers eq. 44 as ansatz and puts it into recurrence eq. 27 we find,
after elimination of Un+2(a, b) via its recursion relation and a comparison of the coefficients of
the linear independent Un(a, b) and Un−1(a, b) sequences, the mixed recurrence relations for
AUk(a, b;n) and BUk(a, b;n). The inputs AU0(a, b;n) = 1 and BU0(a, b;n) = 2 are necessary
in order that for k = 1 eq. 44 coincides with eq. 27. With these inputs and the mixed
recurrence one proves, by induction over k, that AUk(a, b;n) and BUk(a, b;n) are polynomials
in n of degree k, provided a and b are fixed with b 6= −a2/4, b 6= 0 and a 6= 0.
Note 2: For fixed integers a and b 6= −a2/4 the coefficients of the polynomials AUn(a, b;x)
and BUn(a, b;x) furnish two lower triangular (infinite) integer matrices. For the ordinary
Fibonacci case a = 1 = b these positive integer triangles can be found in [5] under the nrs.
A057995 and A057280. For the Pell case a = 2, b = 1 see nrs. A058402 and A058403, and for
the case a = 1, b = 2 see nrs. A073401 and A073402.
Proposition 4: (Iteration of recurrence for k-fold convolutions; non-degenerate Lucas case):

For a2 + 4b 6= 0 the k-fold convolution of the generalized Lucas sequence {Vn(a, b)} is
expressed as linear combination of the two independent solutions of recurrence eq. 11 as
given in eq. 47. The coefficient polynomials AVk(a, b;n) and BVk(a, b;n) satisfy the mixed
recurrence relations eq. 48 and eq. 49.

Proof: Analogous to the proof of Proposition 3.
Note 3: For fixed integers a and b 6= −a2/4 the coefficients of the polynomials AVn(a, b;x) and
BVn(a, b;x) furnish two lower triangular (infinite) integer matrices. For the ordinary Lucas
case a = 1 = b these positive integer triangles can be found in [5] under the nrs. A061188 and
A061189. For the Pell case a = 2, b = 1 see nrs. A062133 and A062134.

5. CONVOLUTIONS OF GENERALIZED p-FIBONACCI SEQUENCES

Generalized p-Fibonacci numbers Un(p; a, b) are defined by eq. 51 for p ∈ N0, b 6= 0 and
a 6= 0, together with the inputs Uj(p; a, b) := aj for j = 0, . . . , p. For p = 1 we recover the
generalized Fibonacci numbers Un(a, b) treated above.
Lemma 5: The generating function U(p; a, b;x) for the generalized p-Fibonacci numbers is
given by eq. 50.

Proof: From the recurrence with inputs given in eq. 51.
Lemma 6: (Riccati eq. for the generalized p-Fibonacci case):

If D(p; a, b) := (p + 1)p+1b + a(ap)p 6= 0 (non-degenerate case) then U(p; a, b;x) satisfies
Riccati eq. 52 with the polynomials Ap(a, b;x) and Bp−1(a;x) defined in eqs. 53 and 54.

Proof: H(p; a, b;x) = 1/U(p; a, b;x) = 1 − ax − bxp+1 satisfies eq. 9 with α(x) ≡
αp(a, b;x) = Ap(a, b;x)/D(p; a, b) and β(x) ≡ βp(a, b;x) = −b(p + 1)2Bp−1(a;x)/D(p; a, b)
with Ap(a, b;x) and Bp−1(a;x) given by eq. 53 and 54. This is shown by comparing coefficients
of powers xi for i = 0, 1, . . . , 2p. According to section 1 Riccati eq. 8 ensues which becomes
eq. 52.
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Note 4: i) If p = 0, U(0; a, b;x) = 1/(1− (a+ b)x) generates powers of a+ b, and one has to
put A0(a, b;x) ≡ 1 and B−1(a;x) ≡ 0. This means that one puts (ap)p = 1 for p = 0.

ii) For given non-vanishing a and b Ap(a, b;x) is a polynomial in x of degree p, and
Bp−1(a;x) is one of degree p− 1. The sum in Bp−1(a;x) can be evaluated to yield the second
of eqs. 54 provided p 6= 0.
Lemma 7: (Coefficient triangles of numbers for polynomials Ap(a, b;x) and Bp(a;x)):

The coefficients of the polynomials defined in eqs. 55 are given by eqs. 56 and 57.
Proof: Bp(a;x) from eq. 54 leads immediately to eq. 57, remembering thatB−1(a;x) ≡ 0.

Then eq. 56 follows from eq. 53 and A0(a, b;x) ≡ 1.
Proposition 5: (Uniqueness of Riccati solution; non-degenerate case):

If D(a, b) 6= 0 then y ≡ U(p; a, b;x) = 1/(1− ax− bxp+1) is the unique solution of Riccati
eq. 52 with eqs. 53, 54 and initial value U(p; a, b; 0) = 1.

Proof: From section 1 we know that the Riccati eq. is equivalent to the inhomogeneous
linear differential eq. for the inverse H = 1/U : H ′ ≡ F (x,H) = (−β(x)/α(x))H − 1/α(x).
Because F (x,H) is continuous in the strip 0 ≤ x ≤ A < ∞, |H| < ∞ and is there (K =
K(p; a, b;A))-Lipschitz, the existence and uniqueness theorem for linear differential eqs. proves
the assertion (see e.g. [8], §6,I,p.62ff). In order to find K we use the summed expression for
Bp−1 from eq. 54 and apply the triangle inequality repeatedly.
Proposition 6: (Recursion for kth convolution of {Un(p; a, b)}; non-degenerate case):

The kth convolution of the sequence {Un(p; a, b)} is given in the non-degenerate case
D(p; a, b) := b(p+ 1)p+1 + a(ap)p 6= 0 recursively by eq. 61 with eq. 62.

Proof: This follows from the general set-up of section 1, eq. 5 with γn−q ≡ 0 and the
appropriate coefficient functions α(x) = αp(a, b;x) and β(x) = βp(a, b;x) given after eq. 54.
See the corresponding eq. 60 for the k + 1-st power of the generating function.
Lemma 8: (Degenerate case D(p; a, b) = 0):

If D(p; a, b) := (p + 1)p+1b + a(ap)p = 0 then U(p; a;x) = 1/(1 − ax − b(p; a)xp+1) =
1/(1− ax+ (((apx/(p+ 1))p+1)/p)) satisfies the first order linear differential eq. 64.

Proof: We prove (a + (p + 1)bxp)Ap(a, b;x) + b(p + 1)2(1 − ax − bxp+1)Bp−1(a;x) = 0
with eqs. 54 and 53 in the version where the sum has been evaluated (the case p = 0 is treated
separately). If we factor out b/(p+ 1− apx) we see that all terms cancel provided we replace
a(ap)p by −b(p+ 1)p+1.

Note 5: The solution 1/(1 − ax − bxp+1) of this linear differential eq. 64 with input
U(p; a, b; 0) = 1 is unique. The proof is analogous to the one of Proposition 5.
Note 6: If U(p; a;x) = 1/(1 − ax + (((apx/(p + 1))p+1)/p) we do not have a formula for
U2(p; a;x), valid for all p, like in the non-degenerate case. Therefore, we cannot derive results
for convolutions along the line shown above.
Lemma 9: (Recurrence in the degenerate case):

If D(p; a, b) := (p + 1)p+1b + a(ap)p = 0 (and b 6= 0) then one can replace recurrence eq.
51 which has depth p+ 1, by the following one with depth p ∈ N.

Un+1(p; a) =
a

(p+ 1)(n+ 1)

p∑
j=1

(
ap

p+ 1

)j−1

(n+ p+ 2− j)Un+1−j(p; a), (65)

where one uses the inputs Uj(p; a) = aj for j = 0, 1, . . . , p− 1.
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Proof: This derives from the sum on the rhs of eq. 58 which now vanishes. If the
coefficients Cj from eq. 59 are used with the replacement of a(ap)p by −b(p + 1)p+1 one
arrives at the desired recurrence, after the common factor b has been dropped. The inputs are
adopted from the original recurrence except that Up can now be computed to be ap.
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