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PROBLEMS PROPOSED IN THIS ISSUE

H-615 Proposed by Paul S. Bruckman, Sointula, Canada
Given n ≥ 1 and complex numbers x0, x1, . . . , xn−1, define the “cyclical” matrix

An =

∣∣∣∣∣∣∣∣∣
x0 x1 x2 . . . xn−2 xn−1

xn−1 x0 x1 . . . xn−3 xn−2

xn−2 xn−1 x0 . . . xn−4 xn−3

· · · . . . · ·
x1 x2 x3 . . . xn−1 x0

∣∣∣∣∣∣∣∣∣ .

Let Dn denote the determinant of An, and sn = x0 + x1 + · · ·+ xn−1. Prove that if the xk’s
are integers such that sn 6= 0, then sn|Dn.

H-616 Proposed by Paul S. Bruckman, Sointula, Canada

Let Cn =
1

n+ 1

(
2n
n

)
, n = 0, 1, . . . be the nth Catalan number (known to be an integer).

Prove that Cn is odd if and only if n = 2u − 1, where u = 0, 1, . . . .

H-617 Proposed by H.-J. Seiffert, Berlin, Germany
The sequence of Fibonacci polynomials is defined by F0(x) = 0, F1(x) = 1, and Fn+2(x) =

xFn+1(x) +Fn(x) for n ≥ 0. Show that, for all real numbers x and all nonnegative integers n,

(a)
2n∑
k=0

(−1)bk/2c
(

2n
k

)
Fk(x) =

√
2(−1)n(x2 + 4)n/2Fn(x) cos

(
ny +

π

4

)
,

(b)
2n∑
k=0

(−1)dk/2e
(

2n
k

)
Fk(x) =

√
2(−1)n(x2 + 4)n/2Fn(x) sin

(
ny +

π

4

)
,

where y = arccos
x√

x2 + 4
. Here, b.c and d.e denote the floor and ceiling function, respectively.
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SOLUTIONS

A ratio of Gammas

H-602 Proposed by Ovidiu Furdui, Western Michigan University, Kalamazoo, MI
(Vol. 41, no. 4, August 2003)

Find the limit

lim
n→∞

Γ
(
−kFn+1

αFn

)
Γ
(
−`Ln+1

αLn

) ,
where k and ` are fixed positive integers, Γ is the Euler function, and α is the golden section.
Solution by V. Mathe, Marseille, France

It is well known (see [1], for example) that the gamma function Γ has simple poles at
z = −n for n = 0, 1, 2, . . . , with the respective residues (−1)n/n!; that is:

lim
z→−n

(z + n)Γ(z) =
(−1)n

n!
.

We also know that Fn+1/(αFn) and Ln+1/(αLn) tend to 1 as n→∞.
We therefore have:

lim
n→∞

(
k − kFn+1

αFn

)
Γ
(
−kFn+1

αFn

)
=

(−1)k

k!
,

and

lim
n→∞

(
`− `Ln+1

αLn

)
Γ
(
−`Ln+1

αLn

)
=

(−1)`

`!
.

Then (
k − kFn+1

αFn

)
Γ
(
−kFn+1

αFn

)
(
`− `Ln+1

αLn

)
Γ
(
−`Ln+1

αLn

) → (−1)k−`
`!
k!

as n→∞.
However, (

k − kFn+1
αFn

)
(
`− `Ln+1

αLn

) =
k

`
· αFn − Fn+1

αLn − Ln+1
· Ln
Fn

= −k
`
· Ln√

5Fn
→ −k

`

as n→∞.
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Therefore the desired limit is (−1)k−`+1 ` · `!
k · k!

.

[1] CRC standard mathematical tables and formulae. 30th edition. Edited by Daniel Zwillinger,
Steven G. Krantz and Kenneth H. Rosen. CRC Press, Boca Raton, FL, 1996: 494.

Also solved by Paul Bruckman, W. Janous, H.-J. Seiffert and the proposer.

Sums of reciprocals of Fibonacci numbers

H-603 Proposed by the E. Herrmann, Siegburg, Germany
(Vol. 41, no. 5, November 2003)

Show that if n ≥ 3 and n ≡ 1 (mod 2), then

1
Fn

<

∞∑
k=0

1
Fn+2k

<
1

Fn−1
.

However, if n ≥ 4 and n ≡ 0 (mod 2), then

1
Fn−1

<

∞∑
k=0

1
Fn+2k

<
1

Fn−2
.

Solution by Harris Kwong, Fredonia, NY

It is obvious that 1/Fn <
∑∞
k=0 1/Fn+2k. We will use Binet’s formulas to establish the

other three inequalities. Let α = (1 +
√

5)/2 and β = (1 −
√

5)/2. Since β < 0, if n is odd,
then

√
5Fn+2k = αn+2k − βn+2k > αn+2k and

√
5Fn−1 = αn−1 − βn−1 < αn−1.

Hence, for odd integers n ≥ 3,

∞∑
k=0

1
Fn+2k

<

∞∑
k=0

√
5

αn+2k
=

√
5

αn−2(α2 − 1)
=
√

5
αn−1

<
1

Fn−1
.

In a similar manner, if n is even and n ≥ 4, then
√

5Fn+2k >
√

5Fn+2k−1 > αn+2k−1,
√

5Fn−2 < αn−2,

√
5Fn+2k < αn+2k and

√
5Fn−1 > αn−1.
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Therefore, for even integers n ≥ 4,

∞∑
k=0

1
Fn+2k

<

∞∑
k=0

√
5

αn+2k−1
=
√

5
αn−2

<
1

Fn−2
,

and

∞∑
k=0

1
Fn+2k

>

∞∑
k=0

√
5

αn+2k
=
√

5
αn−1

>
1

Fn−1
.

Also solved by Paul Bruckman, V. Mathe, H.-J. Seiffert and the proposer.

An Already Encountered Matrix

H-604 Proposed by Mario Catalani, Torino, Italy
(Vol. 41, no. 5, November 2003)

In H-592, the proposers introduced, for n ≥ 2, a non diagonal n× n matrix A such that
A2 = xA+ yI, where x, y are indeterminates and I is the identity matrix.
a) State the conditions under which all the eigenvalues of A are equal.
b) Assume now that not all the eigenvalues of A are equal. Assume that A is a 2n×2n matrix,
and that tr(A) = nx. Consider the Hamilton-Cayley equation for A

2n∑
k=0

(−1)kλkA2n−k = 0,

where λ0 = 1. Find
∑2n
k=0 λk.

Solution by the proposer

If λ is an eigenvalue of A, it must satisfy

λ2 = xλ+ y;

hence, the eigenvalues are

α ≡ α(x, y) =
x+

√
x2 + 4y
2

and β ≡ β(x, y) =
x−

√
x2 + 4y
2

.

380
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We are going to show that all the eigenvalues are equal iff x2 + 4y = 0; that is, α = β. If
α = β, then trivially all the eigenvalues are equal. Now assume that all the eigenvalues are
equal and α 6= β. Using the result from [1], we obtain

n∑
k=0

(−1)kλkFn−k = 0, (1)

where Fn ≡ Fn(x, y) are the Fibonacci polynomials

Fn = xFn−1 + yFn−2, F0 = 0, F1 = 1,

and λi are the elementary symmetric functions of the eigenvalues. If all the eigenvalues are
equal (say, all equal to α), then

λi =
(
n

i

)
αi,

so that the identity (1) becomes

n∑
k=0

(−1)k
(
n

k

)
αkFn−k = 0.

If α 6= 0, we can use Binet’s form for Fn and the identity becomes (after simplifying the
denominator)

n∑
k=0

(−1)k
(
n

k

)
αk(αn−k − βn−k) = 0.

Manipulation of the left hand side leads to

n∑
k=0

(−1)k
(
n

k

)
αn −

n∑
k=0

(−1)k
(
n

k

)
αkβn−k = −

n∑
k=0

(
n

k

)
(−α)kβn−k = −(β − α)n,

where we used Identity 1.25 in [2] and the binomial theorem. It follows that α = β, contra-
dicting our hypothesis.
For part b., imagine that we have k eigenvalues equal to α and 2n− k eigenvalues equal to β;
then,

kα+ (2n− k)β = nx.
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¿From this, we obtain k = n, using the fact that α + β = x. Now note that λ0 = 1 and if
{µ1, . . . , µ2n} are the eigenvalues, then

λk =
∑

i1,...,ik
i1<i2<···<ik

µi1µi2 . . . µik , 1 ≤ k ≤ 2n.

In this case, with n eigenvalues equal to α and n eigenvalues equal to β, this becomes

λk =
min(k,n)∑
h=k−n

(
n

h

)(
n

k − h

)
αhβk−h,

where the summands corresponding to negative h are taken equal to zero. Thus,

2n∑
k=1

λk =
2n∑
k=1

min(k,n)∑
h=k−n

(
n

h

)(
n

k − h

)
αhβk−h.

When k = 0, we take the sum to be 1. We can then write

2n∑
k=0

λk =
2n∑
k=0

min(k,n)∑
h=k−n

(
n

h

)(
n

k − h

)
αhβk−h.

Now consider

(1 + α)n(1 + β)n =
n∑
h=0

n∑
i=0

(
n

h

)(
n

i

)
αhβi.

Setting h+ i = k ≤ 2n, so that k − n ≤ h = k − i ≤ min(k, n), upon substitution we obtain

(1+α)n(1+β)n = [(1+α)(1+β)]n = (1+x−y)n =
2n∑
k=0

min(k,n)∑
h=k−n

(
n

h

)(
n

k − h

)
αhβk−h =

2n∑
k=0

λk,

where we used α+ β = x, αβ = y.
1. N. Gauthier and J.R. Gosselin, “Problem H-592”, The Fibonacci Quarterly 40.5 (2002):
473.
2. H.W. Gould, “Combinatorial Identities”, Morgantown, W. Va. 1972.

Also solved by Paul Bruckman and V. Mathe.

Please Send in Proposals!
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