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1. INTRODUCTION

Let us consider two finite sequences a0, a1, . . . , ar−1 and α0, α1, . . . , αr−1 of real or com-
plex numbers.1 The sequence {Vn}n≥0 defined by Vn = αn for 0 ≤ n ≤ r − 1 and the linear
recurrence relation of order r,

Vn+1 = a0Vn + · · ·+ ar−1Vn−r+1, n ≥ r − 1, (1.1)

is called a (weighted) r-generalized Fibonacci sequence. Furthermore, the sequences

a0, a1, . . . , ar−1 and α0, α1, . . . , αr−1

are called the coefficients and the initial conditions of the sequence {Vn}n≥0 respectively (see
[7, 12, 13, 14] for example). In the sequel we shall refer to it as a sequence of type (1.1). For
such a sequence, the polynomial P (X) = Xr − a0X

r−1 − · · · − ar−2X − ar−1 is called the
characteristic polynomial and its roots are called the characteristic roots. It is known that the
Binet formula (see (2.2) below) expresses Vn in terms of the characteristic roots and the initial
conditions (see [7, 12, 13]).

Sequences of type (1.1) have interested many authors because of their applications in
various aspects of mathematics, physics and engineering. In particular, they appeared in the
papers of Curto and Fialkow [6, 9] on the K-moment problem, where K is a closed subset of
R. For a given sequence {Vn} of real numbers, this problem consists of finding a positive Borel
measure µ whose support is contained in K such that

Vn =
∫
K

tndµ(t) (1.2)

for all n, where the right hand side of (1.2) is called a moment of the measure µ. Recently such
a close connection between sequences {Vn}n≥0 of type (1.1) and the K-moment problem has
also been studied in [2, 5, 8]: for example, if the characteristic roots are all real and simple,
then the Binet formula shows that Vn can be written as in (1.2) for all n ≥ 0, for some discrete

1
It is often assumed that ar-1 6= 0 in the literature; however, we allow ar-1 to be zero in this paper.
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(but not necessarily positive) measure µ, where K is a compact subset of R which contains
the support of µ (see [5]). On the other hand, if there exists a discrete measure µ whose
support is contained in a compact set K such that (1.2) holds for all n ≥ 0, then {Vn}n≥0 is a
sequence of type (1.1). When the characteristic roots are real but not necessarily simple, the
representation of Vn as in (1.2) is not possible in general.

The aim of this paper is to introduce the notion of moments of distributions of compact
support and study its close connection with sequences of type (1.1). For this purpose, we will
first present a factorial Binet formula (see (2.4) below), which is a modification of the usual
Binet formula. We then establish the correspondence between the moments of distributions
of discrete support and sequences of type (1.1) whose characteristic roots are real but not
necessarily simple. In other words, we present here a novel technique for obtaining a new
expression of the Binet formula for sequences of type (1.1) with real characteristic roots.

The paper is organized as follows. In §2 we consider the Binet formula for sequences of
type (1.1) and introduce the notion of their factorial Binet formula. In §3 we define the notion
of a generating distribution and give its connection with sequences of type (1.1). Finally, §4
is devoted to the distributional moment formulation of sequences of type (1.1).

2. A FACTORIAL BINET FORMULA

Let Fr(a0, a1, . . . , ar−1) denote the vector space over R (or over C) consisting of all real
(resp. complex) r-generalized Fibonacci sequences with coefficients a0, a1, . . . , ar−1. Note that
we do not assume ar−1 6= 0. It is well known that this vector space is of dimension r (see [7,
12, 13] for example). Let

P (X) = Xr − a0X
r−1 − · · · − ar−2X − ar−1 (2.1)

be the characteristic polynomial associated with the sequence of type (1.1), and let
λ1, λ2, . . . , λs be its roots with multiplicities m1,m2, . . . ,ms respectively. Note that λi can
possibly be zero.

Let {Vn}n≥0 be a sequence in Fr(a0, a1, . . . , ar−1). It is well known in the classical
literature that its Binet formula is given by

Vn =
s∑
i=1

mi−1∑
j=0

βi,jn
j

λni (2.2)

for n ≥ 0, where βi,j are determined uniquely by the initial conditions {αj}0≤j≤r−1 (see [7,
12, 13] for example).2 More precisely, we can determine βi,j by solving the system of r linear
equations

s∑
i=1

mi−1∑
j=0

βi,jn
j

λni = αn, n = 0, 1, . . . , r − 1.

For n ≥ r, consider the polynomial Xn−rP (X). Every characteristic root λi (1 ≤ i ≤ s)
with multiplicity mi ≥ 1 is a root of Xn−rP (X) with multiplicity ≥ mi. Hence, we see that

2
In this paper, we adopt the convention that 0

0 = 1.

321



FACTORIAL BINET FORMULA AND DISTRIBUTIONAL MOMENT ...

for every j with 0 ≤ j ≤ mi − 1, λi is also a root of the jth derivative (Xn−rP (X))(j) of
Xn−rP (X). Since Xn−rP (X) = Xn − a0X

n−1 − · · · − ar−2X
n−r+1 − ar−1X

n−r, the process
of derivation until the jth order implies that λi (1 ≤ i ≤ s) satisfy the following relation: for
n ≥ r + j,

n!
(n− j)!

λn−ji − a0
(n− 1)!

(n− 1− j)!
λn−1−j
i − · · · − ar−1

(n− r)!
(n− r − j)!

λn−r−ji = 0,

and for r ≤ n < r + j,

n!
(n− j)!

λn−ji − a0
(n− 1)!

(n− 1− j)!
λn−1−j
i − · · · − an−j−1

j!
0!
λ0
i = 0.

For every n ≥ 0, we set

y(i,j)
n =

{ n!
(n−j)!λ

n−j
i , n ≥ j,

0, 0 ≤ n < j,

where 1 ≤ i ≤ s and 0 ≤ j ≤ mi − 1. The above observation suggests the following.

Proposition 2.1: The set {{y(i,j)
n }n≥0 : 1 ≤ i ≤ s, 0 ≤ j ≤ mi− 1} constitutes a basis of the

vector space Fr(a0, a1, . . . , ar−1).

Proof: First, by the above observation, we see that each {y(i,j)
n }n≥0 is an element of

Fr(a0, a1, . . . , ar−1).
Let {Vn}n≥0 be an arbitrary element of Fr(a0, a1, . . . , ar−1). Then we have the Binet

formula (2.2) for uniquely determined numbers βi,j . On the other hand, for a real number x
and an integer n ≥ 0, set

[x]n = x(x− 1)(x− 2) · · · (x− n+ 1),

where we define [x]0 = 1 (see [3, p. 19]). Note that for an integer m with 0 ≤ m < n, we
always have [m]n = 0. Then for any real number x, we have the well known formula

xn =
n∑
k=0

Skn[x]k,

where Skn is the Stirling number of the second kind which is the number of partitions of a set
of n objects into k classes (see [3, §1.10] or [10], for example). Note that for convenience, we
put

S0
n =

{
0, n ≥ 1,
1, n = 0.
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Note also that we have y(i,j)
n = [n]jλ

n−j
i , where for λi = 0, the right hand side is understood

to be zero for n < j, since [n]j = 0. Then by (2.2), we have

Vn =
s∑
i=1

(
mi−1∑
k=0

βi,kn
k

)
λni =

s∑
i=1

mi−1∑
k=0

βi,k

k∑
j=0

λjiS
j
k[n]jλ

n−j
i

=
s∑
i=1

mi−1∑
j=0

mi−1∑
k=j

βi,kλ
j
iS

j
k

 y(i,j)
n

 . (2.3)

Therefore, the set {{y(i,j)
n }n≥0 : 1 ≤ i ≤ s, 0 ≤ j ≤ mi − 1} generates the vector space

Fr(a0, a1, . . . , ar−1) (over R or C). By counting the dimension, we see that the set must be
a basis of the vector space. This completes the proof.

¿From Proposition 2.1 we derive the following factorial Binet formula for sequences of
type (1.1), which is similar to the usual Binet formula (2.2).
Theorem 2.2 (Factorial Binet Formula): Let {Vn}n≥0 be a sequence of type (1.1) in
Fr(a0, a1, . . . , ar−1). Then there exist unique numbers αi,j (1 ≤ i ≤ s, 0 ≤ j ≤ mi − 1) such
that

Vn =
s∑
i=1

mi−1∑
j=0

αi,j
n!

(n− j)!
λn−ji (2.4)

for all n ≥ 0, where for n < j, we treat (n!/(n− j)!)λn−ji as zero.
Remark 2.3: The connection between the two expressions (2.2) and (2.4) of Vn is given
as follows. If we are given the expression (2.2), then αi,j in (2.4) can be obtained by the
equation (2.3) by using the Stirling numbers of the second kind. Conversely, if we are given
the expression (2.4), then βi,j in (2.2) can be obtained by using the formula

[n]j =
j∑

k=0

skjn
k,

where skj are the Stirling numbers of the first kind (see [3, §1.5] or [10], for example). Note
that

s0
j =

{
0, j > 0,
1, j = 0.

More precisely, we have

Vn =
s∑
i=1

mi−1∑
j=0

mi−1∑
k=j

αi,ks
j
kλ
−k
i

nj

λni . (2.5)
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Here, when λi = 0, the term αi,ks
j
kλ
−k
i njλni is understood to be zero for n > 0 or for n = 0

and j > 0. It is understood to be zero also for n = 0, j = 0 and k > 0, since sjk = 0.

3. MOMENT OF DISTRIBUTIONS

Let Γ = {γn}0≤n<p with 1 ≤ p ≤ +∞ be a sequence of real numbers. Let K be a closed
subset of R. The classical K-moment problem associated with Γ consists of finding a positive
Borel measure µ such that

γn =
∫
K

tndµ(t), 0 ≤ ∀n < p, and Suppµ ⊂ K, (3.1)

where Suppµ denotes the support of µ. If this problem has a solution µ, then we say that µ
is a representing measure of the sequence Γ = {γn}0≤n<p. For p = +∞ the problem (3.1) is
called the full K-moment problem (see [1, 4] for example). For p < +∞ the problem (3.1) is
called the truncated K-moment problem, which has been studied by Curto and Fialkow [6,9].
It is well known that if Γ has a representing measure of finite support, then it is a sequence of
type (1.1). Furthermore, if Γ has a representing measure and is a sequence of type (1.1) with
p ≥ 2r + 1, then this measure is of finite support [6, 8, 9].

The generalized K-moment problem associated with Γ consists of finding a general measure
µ which is not necessarily nonnegative and which satisfies (3.2) below. Such a measure µ is
called a generating measure of the sequence Γ. Recall that this problem, issued from the many
body problem in quantum physics, has been studied in [5] by using sequences of type (1.1). It
has been shown that if Γ has a generating measure, then this measure is of finite support if
and only if Γ is a sequence of type (1.1) [5].

The aim of this section is to introduce a concept of distributional moment problem in
order to generalize these situations.

Let µ be a distribution. Recall that if µ is of compact support, then it is defined on the
space of functions of class C∞ (see [11] for example), and hence we can consider the value
〈µ|tn〉 of µ on t 7→ tn.
Definition 3.1: Let µ be a distribution of compact support K. The number Vn = 〈µ|tn〉 is
called the moment (or power moment) of order n of the distribution µ.

The above definition is a natural extension of the moment of a measure. We get also the
following notion of generating distributions.
Definition 3.2: Let Γ = {γn}0≤n<p with 1 ≤ p ≤ +∞ be a sequence of real numbers and µ a
distribution of compact support K. We say that µ is a generating distribution of Γ if we have

γn = 〈µ|tn〉 (3.2)
for every n with 0 ≤ n < p.

Let a0, a1, . . . , ar−1 be a sequence of real numbers and let λ1, . . . , λs be the roots of the
characteristic polynomial (2.1) with multiplicities m1,m2, . . . ,ms respectively. Note that ar−1

or λi can possibly be zero. In the following, we assume that the roots are all real numbers.
Let δi be the Dirac measure at the point λi and δ(j)

i its jth derivative. Then δi and δ(j)
i define

distributions of compact support. Let us consider the following classical properties on the
differentiation of distributions:

〈φµ|f〉 = 〈µ|φf〉 and 〈Dkµ|f〉 = (−1)k〈µ|Dkf〉.
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Here, φ and f are real functions of class C∞ and D = d/dt, where t ∈ R denotes the usual
coordinate. Consider the distribution of finite support

µ =
s∑
i=1

mi−1∑
j=0

αi,j(−1)jδ(j)
i , (3.3)

where αi,j are real numbers. Then a straightforward computation allows us to obtain

〈µ|tn〉 =
s∑
i=1

mi−1∑
j=0

αi,j
n!

(n− j)!
λn−ji (3.4)

for every n ≥ 0. Hence, from Proposition 2.1 we derive the following.
Proposition 3.3: Let λ1, . . . , λs and m1, . . . ,ms be as above. Consider the distribution

µ =
s∑
i=1

mi−1∑
j=0

αi,j(−1)jδ(j)
i ,

where αi,j (1 ≤ i ≤ s, 0 ≤ j ≤ mi − 1) are real numbers. Then the sequence {Vn}n≥0 of
moments Vn = 〈µ|tn〉 of the distribution µ is a sequence of type (1.1) of order r = m1+· · ·+ms.
More precisely, its initial conditions and characteristic polynomial are given by Vn = 〈µ|tn〉
for n = 0, 1, . . . , r − 1 and P (X) =

∏s
i=1(X − λi)mi respectively.

Example 3.4: For λ ∈ R, m ≥ 1, and β0, . . . , βm−1 ∈ R, set

Tλ,m =
m−1∑
j=0

βjδ
(j)
λ ,

where δ(j)
λ is the jth derivative of the Dirac measure δλ. For n ≥ 0, set

Vn = 〈Tλ,m|tn〉 =
m−1∑
j=0

(−1)jβj
n!

(n− j)!
λn−j =

m−1∑
j=0

m−1∑
k=j

sjk
(−1)kβk
λk

nj

λn,

where sjk are the Stirling numbers of the first kind (see (2.5) or [3]). Then the sequence of
moments {Vn}n≥0 of the distribution Tλ,m is a sequence of type (1.1) of order r = m, whose
initial conditions are given by Vn = 〈Tλ,m|tn〉 for n = 0, 1, . . . ,m− 1 and whose characteristic
polynomial is P (X) = (X − λ)m.

The distributional K-moment problem can be stated as follows. Let Γ = {γn}0≤n<p
(1 ≤ p ≤ +∞) be a sequence of real numbers. Let K be a compact subset of R. The
distributional K-moment problem associated with Γ consists of finding a distribution µ such
that

γn = 〈µ|tn〉, 0 ≤ ∀n < p, and Suppµ ⊂ K, (3.5)

where Suppµ denotes the support of µ.
The next section is devoted to the study of the distributional K-moment problem associ-

ated with a sequence of type (1.1).
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Remark 3.5: We see that the distribution µ given by (3.3) is a (general) measure if and only
if αi,j = 0 for every j 6= 0. In this case, the discrete measure µ =

∑s
i=1 αi,0δi can be written

as µ = µ+ − µ− for some positive measures µ+ and µ−.
In fact, all the above arguments work even if we allow Vn to be complex numbers. In that

case, αi,j are complex numbers. If the distribution µ given by (3.3) is a measure, then we have
µ = (µ+

1 − µ
−
1 ) + (µ+

2 − µ
−
2 )
√
−1 for some positive measures µ±1 and µ±2 .

4. DISTRIBUTIONAL MOMENT FORMULATION OF
SEQUENCES OF TYPE (1.1)

It is known that a sequence {Vn}n≥0 of real or complex numbers admits a generating
measure of finite support if and only if it is of type (1.1) and all the roots of the characteristic
polynomial are real and simple (see [2, 5, 6]). The following theorem generalizes this result.
Theorem 4.1: Let {Vn}n≥0 be a sequence of real or complex numbers. Then the following
two are equivalent.
(i) The sequence {Vn}n≥0 is an element of Fr(a0, a1, . . . , ar−1) for some real numbers

a0, . . . , ar−1 such that all the roots of the characteristic polynomial (2.1) are real numbers.
(ii) The sequence {Vn}n≥0 has a generating distribution of finite support.

For the proof of Theorem 4.1, we will use the following classical lemma (see [11] for
example).
Lemma 4.2: A distribution whose support consists of at most one point y is a finite linear
combination of the Dirac measure at y and its derivatives.

Proof of Theorem 4.1: It is easy to check that

n!
(n− j)!

λn−ji = 〈(−1)jδ(j)
i |t

n〉

for every n ≥ 0. Note that the above equation is valid also for λi = 0. Then the implication
(i) =⇒ (ii) follows from Theorem 2.2 and (3.3).

For the converse, set Suppµ = {λ1, . . . , λs}. We have µ =
∑s
i=1 µi, where µi is a

distribution whose support consists of the point λi. By Lemma 4.2 we have

µi =
mi−1∑
j=0

αi,j(−1)jδ(j)
i

and hence

µ =
s∑
i=1

mi−1∑
j=0

αi,j(−1)jδ(j)
i

for some real or complex numbers αi,j . Therefore, the conclusion follows from Proposition 3.3.
More precisely, we have

Vn = 〈µ|tn〉 =
s∑
i=0

mi−1∑
j=0

αi,j
n!

(n− j)!
λn−ji .
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Therefore, {Vn}n≥0 is a sequence of type (1.1).
Example 4.3: Let {Vn}n≥0 be the 2-generalized Fibonacci sequence defined by V0 = 1, V1 = 1
and Vn+1 = 4Vn − 4Vn−1 for n ≥ 1. The characteristic polynomial of {Vn}n≥0 is P (X) =
(X − 2)2 = X2 − 4X + 4. From the factorial Binet formula (2.4) (or the usual Binet formula
(2.2)), we derive that

Vn = 2n − n2n−1 =
(

1− n

2

)
2n

for n ≥ 0. The sequence {Vn}n≥0 has the generating distribution µ = δ2 + δ
(1)
2 defined by

〈µ|ϕ〉 = ϕ(2)− ϕ′(2).
More generally, for complex numbers a, b and a real number λ, let {Vn}n≥0 be the 2-

generalized Fibonacci sequence defined by V0 = a, V1 = (a + b)λ, and Vn+1 = a0Vn + a1Vn−1

for n ≥ 1, where a0 = 2λ and a1 = −λ2. It is easy to verify that the Binet formula is given by
Vn = (a+ bn)λn for n ≥ 0. A straightforward verification shows that Vn = 〈µ|tn〉 for every
n ≥ 0, where µ = aδλ − bλδ(1)

λ .
Example 4.4: Let {Vn}n≥0 be the 5-generalized Fibonacci sequence defined by V0 = 1, V1 =
3, V2 = 9, V3 = 29, V4 = 102, and Vn+1 = 13Vn − 67Vn−1 + 171Vn−2 − 216Vn−3 + 108Vn−4 for
n ≥ 4. Then we can verify that the factorial Binet formula is given by

Vn = 2n + n2n−1 +
1
2

n!
(n− 2)!

3n−2

for n ≥ 0. We see easily that Vn = 〈µ|tn〉 for every n ≥ 0, where

µ = δ2 − δ(1)
2 +

1
2
δ

(2)
3 .

Example 4.5: For r ≥ 1, let {Vn}n≥0 be the r-generalized Fibonacci sequence defined by
V0 = · · · = Vr−2 = 0, Vr−1 = 1, and

Vn+1 =
r−1∑
k=0

(−1)k
(

r

k + 1

)
Vn−k (4.1)

for n ≥ r−1. Note that the characteristic polynomial is P (X) = (X−1)r. Then we can verify
that the factorial Binet formula is given by

Vn =
1

(r − 1)!
n!

(n− r + 1)!
=
(

n

r − 1

)
for n ≥ 0, where the last term is understood to be zero for n < r − 1. A straightforward
verification shows that Vn = 〈µ|tn〉 for every n ≥ 0, where

µ =
1

(r − 1)!
δ

(r−1)
1 .
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Note that the equation (4.1) gives the formula(
n+ 1
r − 1

)
=

r−1∑
k=0

(−1)k
(

r

k + 1

)(
n− k
r − 1

)
for n ≥ r − 1.
Example 4.6: Let {Vn}n≥0 be the 3-generalized Fibonacci sequence defined by V0 = 2, V1 =
1, V2 = 0, and Vn+1 = 4Vn − 4Vn−1 + 0Vn−2 for n ≥ 2. Then we can verify that the factorial
Binet formula is given by Vn = 2n − n2n−1 + 0n for n ≥ 0. We see easily that Vn = 〈µ|tn〉 for
every n ≥ 0, where µ = δ2 + δ

(1)
2 + δ0. Compare this example with that of Example 4.3.

Remark 4.7: We have not assumed ar−1 6= 0 from the beginning so as to allow a characteristic
root λi to be zero. This is necessary in Theorem 4.1. If we assume ar−1 6= 0, then the
characteristic roots should be nonzero, and we would have to exclude 0 ∈ R as a support for
the distribution in Theorem 4.1. See Example 4.6 for the effect of a support containing zero.
Remark 4.8: As we have noted in §3, it has been known that if {Vn}n≥0 has a generating
measure, then this measure is of finite support if and only if {Vn}n≥0 is a sequence of type
(1.1) [5]. The corresponding statement for distributions is also correct: i.e., if {Vn}n≥0 has a
generating distribution, then this distribution is of discrete support if and only if {Vn}n≥0 is
a sequence of type (1.1). The proof will be given in a forthcoming paper.

So far, we have always assumed that all the roots of the characteristic polynomial (2.1)
are real numbers. We need this assumption here, since we cannot define a distribution in the
complex plane. We do not know if we can remove this assumption or not.
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