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1. INTRODUCTION

The notion of an∞-generalized Fibonacci sequence has been introduced in [6], and studied
in [1], [7], [9]. This class of sequences defined by linear recurrences of infinite order is an
extension of the class of ordinary (weighted) r-generalized Fibonacci sequences (r-GFS, for
short) with r finite defined by linear recurrences of rth order (for example, see [2], [3], [4], [5],
[8] etc.) More precisely, let {ai}∞i=0 and {α−i}∞i=0 be two sequences of real or complex numbers,
where ai 6= 0 for some i. The former is called the coefficient sequence and the latter the initial
sequence. The associated ∞-generalized Fibonacci sequence (∞-GFS, for short) {Vn}n∈Z is
defined as follows:

Vn = αn if n ≤ 0, (1.1)

Vn =
∞∑

i=0

aiVn−i−1 if n ≥ 1. (1.2)

As is easily observed, the general terms Vn may not necessarily exist. In [1], necessary and
sufficient conditions for the existence of the general terms have been studied.

In this paper, we consider the case where the coefficient sequence is periodic. In §2, we
give several necessary and sufficient conditions for the existence of the general terms Vn (n ≥ 1)
of such a sequence. We will also see that, in our case, the sequence {Vn}n≥1 can be considered
as an r-GFS with r being the period of the coefficient sequence, where the new associated
finite sequence is obtained from the original periodic infinite sequence by a slight modification
(see Theorem 2.4). In §3, we consider a power series associated with the infinite coefficient
sequence, which plays a role similar to that of the characteristic polynomial for an r-GFS
with r finite. We will see that the inverses of the zeros of such a power series are roots of
the characteristic polynomial associated with the modified finite coefficient sequence. Finally
in §4, we will confine ourselves to the case where ai ≥ 0 and obtain some results about the
asymptotic behavior of such sequences.
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2. EXISTENCE OF GENERAL TERMS

Let {ai}∞i=0 and {α−i}∞i=0 be as in §1 and {Vn}n∈Z the associated∞-GFS defined by (1.1)
and (1.2). Throughout the paper, we assume that there exists a positive integer r such that

ai+r = ai for all i ≥ 0. (2.1)

In other words, we assume that the coefficient sequence {ai} is periodic of period r > 0. In
this case, we call the sequence {Vn}n∈Z a periodic ∞-generalized Fibonacci sequence. In this
section, we give some necessary and sufficient conditions for the existence of the general terms
of a periodic ∞-GFS. First we show the following.
Proposition 2.1: If the series

Sj =
∞∑

k=0

α−kr−j (2.2)

converges for all j with 0 ≤ j ≤ r − 1, then the general term Vn exists for all n ≥ 1.
Proof: By [1], we have only to show that for all n ≥ 1, the series

∞∑
i=0

ai+n−1α−i (2.3)

converges. First note that
lim

i→∞
α−i = 0 (2.4)

by our assumption. For m ≥ 0 and j with 0 ≤ j ≤ r − 1, we have

mr+j∑
i=0

ai+n−1α−i =
m−1∑
k=0

r−1∑
l=0

akr+l+n−1α−(kr+l) +
mr+j∑
i=mr

ai+n−1α−i

=
r−1∑
l=0

al+n−1

(
m−1∑
k=0

α−kr−l

)
+

j∑
i=0

ai+n−1α−(i+mr),

where the second equality follows from (2.1). Then by our assumption together with (2.4), we
see that

lim
m→∞

mr+j∑
i=0

ai+n−1α−i =
r−1∑
l=0

al+n−1Sl

for every j with 0 ≤ j ≤ r−1, where the limiting value does not depend on j. Hence the series
(2.3) converges. This completes the proof.

Let us consider the converse of Proposition 2.1. Consider the polynomial T (x) =∑r−1
j=0 ajx

r−1−j . Then we have the following.
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Proposition 2.2: If T (x) does not have any root ξ ∈ C with ξr = 1, then the general term
Vn exists for all n ≥ 1 if and only if the series (2.2) converges for all j with 0 ≤ j ≤ r − 1.

Proof: Consider the matrix

M =



ar−1 ar−2 · · · a1 a0

a0
. . . . . . a1

...
. . . . . . . . .

...

ar−3
. . . . . . ar−2

ar−2 ar−3 · · · a0 ar−1

 .

Then it is easy to see that M =
∑r−1

j=0 ajB
r−1−j , where B is the r × r matrix given by

B =


0 1 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 · · · · · · 0 1
1 0 · · · · · · 0

 .

Since B is diagonalizable over the complex numbers and its eigenvalues are the rth roots
of unity, we see that M is nonsingular if and only if T (ξ) 6= 0 for all rth roots ξ of unity, which
is satisfied by our hypothesis. Hence M is nonsingular and has its inverse. Thus for each j

with 0 ≤ j ≤ r − 1, there exists a set of r complex numbers v(j)
0 , . . . , v

(j)
r−1 such that for all k

with 0 ≤ k ≤ r − 1, we have
∑r−1

l=0 v
(j)
l al+k = δkj , where

δkj =
{

1 if k = j,

0 if k 6= j.

Now let us assume that the general terms Vn exist. Then by [1], the series (2.3) converges for
all n. Hence, putting

δ̃kj =
{

1 if k ≡ j mod r,

0 if k 6≡ j mod r,

we have, for each j with 0 ≤ j ≤ r − 1,

r−1∑
l=0

v
(j)
l

∞∑
i=0

ai+lα−i =
∞∑

i=0

(
r−1∑
l=0

v
(j)
l al+i

)
α−i =

∞∑
i=0

δ̃ijα−i,

which shows that the sequence (2.2) converges. The converse follows from Proposition 2.1.
This completes the proof.

We also have the following.
Proposition 2.3: The general term Vn exists for all n ≥ 1 if and only if the first r terms
V1, . . . , Vr exist.
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Proof: Suppose that the first r terms V1, . . . , Vr exist. Let us show that the terms
V1, . . . , Vn exist for all n by induction on n. When n = r, this is obvious. Suppose n ≥ r and
that V1, . . . , Vn exist. Then by (1.2), we have

Vn+1 =
r−1∑
i=0

aiVn−i +
∞∑

i=r

aiVn−i (2.5)

=
r−1∑
i=0

aiVn−i +
∞∑

i=0

ai+rVn−i−r (2.6)

=
r−1∑
i=0

aiVn−i +
∞∑

i=0

aiVn−i−r (2.7)

=
r−1∑
i=0

aiVn−i + Vn−r+1 (2.8)

=
r−2∑
i=0

aiVn−i + (ar−1 + 1)Vn−r+1, (2.9)

where (2.7) follows from (2.1) and (2.8) follows from (1.2) and our induction hypothesis. Thus
the term Vn+1 exists. This completes the proof.

Note that (2.9) shows the following.
Theorem 2.4: If the first r terms V1, . . . , Vr exist, then the sequence {Vn}n≥1 is a (weighted )
r-generalized Fibonacci sequence with respect to the coefficient sequence

{a0, a1, . . . , ar−2, ar−1 + 1}

and the initial sequence {V1, . . . , Vr} in the sense of [3].
In particular, we have a Binet type formula (see [3, Theorem 1]) and consequently we can

obtain some information about the asymptotic behavior of such sequences using results of [3]
(and without using results of [6] about ∞-GFS’s).
Remark 2.5: So far, we have not assumed that r is the minimum positive integer satisfying
(2.1). Thus Theorem 2.4 holds even if we replace r with kr, where k is an arbitrary positive
integer.

3. CHARACTERISTIC ROOTS

In this section, for a periodic ∞-GFS, we consider an analogue of the characteristic poly-
nomial for an r-GFS with r finite. Consider the series Q(z) associated with the coefficient
sequence {ai}∞i=0 defined by Q(z) = 1−

∑∞
i=0 aiz

i+1 (see [1, §5]). In the following, we suppose
that ai0 6= 0 for some i0 ≥ 0.
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Lemma 3.1: The radius of convergence of the series Q(z) is equal to 1. In fact, for a complex
number z, the series Q(z) converges if and only if |z| < 1.

Proof: Suppose that the series Q(z) converges for a complex number z. Then we have
limi→∞ aiz

i+1 = 0. Since ai 6= 0 for all i ≡ i0 mod r, this implies that limi→∞ z
i+1 = 0.

Hence we have |z| < 1. The converse is obvious, since the sequence {ai}∞i=0 is bounded. This
completes the proof.

For m ≥ 0, set Qm(z) = 1 −
∑m

i=0 aiz
i+1. Suppose |z| < 1. Then we have Q(z) =

limm→∞Qm(z) and in particular

Q(z) = lim
k→∞

Qkr−1(z). (3.1)

By (2.1), we see easily that

Qkr−1(z) = 1−
kr−1∑
i=0

aiz
i+1

= 1−
k−1∑
l=0

r−1∑
j=0

ajz
lr+j+1



= 1−
r−1∑
j=0

ajz
j+1

k−1∑
l=0

zlr

= 1−

r−1∑
j=0

ajz
j+1

 1− zkr

1− zr
.

Thus we have, by (3.1),

Q(z) =
P1(z)
1− zr

, (3.2)

since |z| < 1, where

P1(z) = 1−
r−2∑
j=0

ajz
j+1 − (ar−1 + 1)zr.

Let P be the characteristic polynomial for an r-GFS with respect to the coefficient se-
quence {a0, . . . , ar−2, ar−1 + 1} given by

P (x) = xr − a0x
r−1 − a1x

r−2 − · · · − ar−2x− (ar−1 + 1). (3.3)
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Note that P (x) = xrP1(x−1) and hence by (3.2) we have

Q(x−1) =
P (x)
xr − 1

. (3.4)

Thus, for a complex number λ with |λ| > 1, Q(λ−1) = 0 if and only if P (λ) = 0 by Lemma 3.1
and (3.4). Thus we have the following.
Proposition 3.2: For a nonzero complex number λ, if λ−1 is a zero of Q, then |λ| > 1 and λ
is a root of the characteristic polynomial P . Conversely, if λ is a root of P with |λ| > 1, then
λ−1 is a zero of Q.
Remark 3.3: If λ is as in Proposition 3.2, then the sequence {Wn}n∈Z defined by Wn = λn

is a periodic ∞-GFS associated with the coefficient sequence {ai}∞i=0.
Proposition 3.2 shows that the inverse of every zero of Q is a root of the characteristic

polynomial P . The converse does not hold in general as is seen in the following example.
Example 3.4: Consider the coefficient sequence {ai}∞i=0 defined by

ai =
{

4/3 if i ≡ 0 mod 2,
1/3 if i ≡ 1 mod 2,

.

where r = 2. Then we see easily that the roots of the characteristic polynomial P defined by
(3.3) are λ1 = 2 and λ2 = −2/3. Thus λ−1

1 is a zero of Q, while λ−1
2 is not. In particular,

the sequence {Wn}n∈Z defined by Wn = λn
2 is not an ∞-GFS associated with the coefficient

sequence {ai}∞i=0, since the series in (1.2) does not converge, while it is a 2-GFS associated
with the coefficient sequence {a0, a1 + 1}.

4. THE CASE OF NONNEGATIVE COEFFICIENTS

Throughout this section, we assume that all the coefficients ai are nonnegative real num-
bers. By [3, Lemma 8], there exists a unique positive root q of the characteristic polynomial
P defined by (3.3).
Lemma 4.1: We always have q > 1.

Proof: The function ϕ defined by ϕ(x) = x−rP (x) for x > 0 is obviously differentiable
and increasing. Furthermore, we have limx→+0 ϕ(x) = −∞, limx→∞ ϕ(x) = 1 and ϕ′(x) > 0
for all x > 0. Thus there exists a unique positive zero of ϕ, which is nothing but the root q of
P . Now, using our assumption together with (3.3), we see easily that ϕ(1) < 0, which implies
that q > 1. This completes the proof.

The above lemma together with Proposition 3.2 shows that q−1 is a zero of the series Q.
Thus the conditions of [1, §5] are satisfied and the results obtained there can be applied. In
the following, let us assume that the general term Vn exists for all n ≥ 1. Then, we have the
following.
Proposition 4.2: The following three conditions are equivalent.
(1) limn→∞ Vn/q

n exists.
(2) The greatest common divisor GCD∞ of the integers {i+ 1 : ai 6= 0} is equal to 1.
(3) The greatest common divisor GCDr of the integers {i+ 1 : ai 6= 0, 0 ≤ i ≤ r− 2} ∪ {r} is
equal to 1.
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Proof: The equivalence of (1) and (3) follows from the results of [3, §4], since, by Theo-
rem 2.4, {Vn}∞n=1 is an r-GFS associated with the coefficient sequence {a0, . . . , ar−2, ar−1 +1}
(see also [10, Theorem 12.2]. By (2.1), we see that GCD∞ coincides with the greatest common
divisor of the integers {i + 1 : ai 6= 0, 0 ≤ i ≤ r − 1} ∪ {r} and hence with GCDr. From this
the equivalence of (2) and (3) follows. This completes the proof.

Note that a formula for the limiting value of Proposition 4.2 (1) is obtained in [3] (see
also [6]).
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