ZEROS OF A CLASS OF FIBONACCI-TYPE POLYNOMIALS

Yi Wang

Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, China

Mingfeng He

Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, China (Submitted March 2002-Final Revision May 2003)

1. INTRODUCTION

Let a, b be two integers and $a \neq 0$. Consider a class of Fibonacci-type polynomials $G_n(x) = G_n(a, b; x)$ defined by the recursive relation

$$G_{n+2}(x) = xG_{n+1}(x) + G_n(x)$$
(1)

with the initial values $G_0(x) = a$ and $G_1(x) = x + b$. The polynomials $G_{n-1}(1,0;x)$ and $G_n(2,0;x)$ $(n \ge 1)$ are just the usual Fibonacci polynomials $F_n(x)$ and the Lucas polynomials $L_n(x)$, respectively. Our concern in this paper is to study some of the properties of the zeros of the Fibonacci-type polynomials $G_n(a,b;x)$.

The zeros of $F_n(x)$ and $L_n(x)$ have been given explicitly by V. E. Hoggatt, Jr. and M. Bicknell [3] and N. Georgieva [2] (see MR52#5634 for corrections by Reviewer). However there are no general formulae for the zeros of the Fibonacci-type polynomials. There have been quite a few papers concerned the properties of the zeros of the Fibonacci-type polynomials in recent years. For example, G. A. Moore [8] and H. Prodinger [9] investigated the asymptotic behavior of the maximal real zeros of $G_n(-1, -1; x)$ respectively. The authors et al. [11] and F. Mátyás [5] investigated the same problem for $G_n(a, a; x)(a < 0)$ and $G_n(a, \pm a; x)(a \neq 0)$ respectively. In [6], F. Mátyás showed that the absolute values of complex zeros of polynomials $G_n(a, b; x)$ do not exceed max $\{2, |a| + |b|\}$, which generalizes the result of P. E. Ricci [10] who investigated the problem in the case a = b = 1.

In the present paper, we first give a new bound $1 + \max\{|a|, |b|\}$ for the absolute values of the zeros of $G_n(a, b; x)$ by using the Gerŝchgorin's Cycle Theorem in §2. Our method can also obtain Mátyás' bound. Then in §3 we present a necessary and sufficient condition that $G_n(a, b; x)$ has real zeros. Finally in §4 we investigate the asymptotic behavior of the maximal real zeros of $G_n(a, b; x)$.

For our purposes, we need the Binet-form expression of $G_n(x)$. Following standard procedures, we easily obtain

$$G_n(x) = [c_1(x)\lambda_1^n(x) + c_2(x)\lambda_2^n(x)]/2\sqrt{x^2 + 4},$$
(2)

where

$$\begin{cases} c_1(x) = a\sqrt{x^2 + 4} + (2 - a)x + 2b \\ c_2(x) = a\sqrt{x^2 + 4} - (2 - a)x - 2b \end{cases}$$

and

$$\begin{cases} \lambda_1(x) = (x + \sqrt{x^2 + 4})/2 \\ \lambda_2(x) = (x - \sqrt{x^2 + 4})/2 \end{cases}$$

are the roots of the associated characteristic equation of the sequence $G_n(x)$:

$$\lambda^2 - x\lambda - 1 = 0.$$

2. BOUNDS FOR ZEROS

Using the recursive relation (1) and an induction argument, it can be checked easily that

$$G_n(x) = \begin{vmatrix} x+b & -1 \\ a & x & -1 \\ & 1 & x & -1 \\ & & \ddots & \ddots & \ddots \\ & & & 1 & x & -1 \\ & & & & 1 & x & -1 \\ & & & & & 1 & x \end{vmatrix}$$

for $n \ge 2$. Thus $G_n(x)$ can be viewed as the characteristic polynomial of the $n \times n$ matrix

$$M_n = \begin{pmatrix} -b & 1 & & & \\ -a & 0 & 1 & & & \\ & -1 & 0 & 1 & & \\ & & \ddots & \ddots & \ddots & \\ & & & -1 & 0 & 1 \\ & & & & -1 & 0 & 1 \\ & & & & & -1 & 0 \end{pmatrix},$$

and the zeros of $G_n(x)$ are therefore the eigenvalues of M_n . For the location of the eigenvalues of a matrix, we have the following well-known proposition due to Gerŝchgorin (see, e.g., [1], Theorem 9.1, p. 500). For a matrix $A = (a_{ij})$ of order n, define

$$r_i = \sum_{\substack{1 \le j \le n \\ j \ne i}} |a_{ij}|, \quad i = 1, 2, \dots, n$$

and let Z_i denote the circle in the complex plane C with center a_{ii} and radius r_i (which is called the i^{th} Gerschgorin circle of A), that is

$$Z_i = \{ z \in \mathcal{C} : |z - a_{ii}| \le r_i \}.$$

Gerŝchgorin's Cycle Theorem: Let $A = (a_{ij})$ be a matrix of order n and let λ be an eigenvalue of A. Then λ belongs to one of the circles Z_i .

¿From this theorem it follows that the eigenvalues of the matrix M_n must be contained in the circles

$$|\lambda + b| \le 1$$
, $|\lambda| \le |a| + 1$, $|\lambda| \le 2$, $|\lambda| \le 1$.

Note that a is a nonzero integer. Hence we have the following.

342

Theorem 2.1: The zeros of $G_n(a, b; x)$ satisfy $|x| \le 1 + \max\{|a|, |b|\}$.

Note that the transpose M^T of a matrix M has the same eigenvalues as M. Hence the zeros of $G_n(a, b; x)$ are also the eigenvalues of the matrix M_n^T . Thus we obtain the following result by using Gerschgorin's Cycle Theorem again, which corresponds just with the result of Mátyás[6].

Theorem 2.2: The zeros of $G_n(a, b; x)$ satisfy $|x| \le \max\{2, |a| + |b|\}$.

Example 2.1: From Theorem 2.1 and 2.2 it follows that the zeros of the Fibonacci polynomials $F_n(x) = G_{n-1}(1,0;x)$ and the Lucas polynomials $L_n(x) = G_n(2,0;x)$ satisfy $|x| \le 2$, which can also be obtained directly from their expression given in [3].

3. EXISTENCE OF REAL ZEROS

In this section we investigate the existence of real zeros of $G_n(x)$. Denote by $R_n = R_n(a, b)$ the set of real zeros of $G_n(x) = G_n(a, b; x)$. In particular, $R_n = \emptyset$ if $G_n(x)$ has no real zeros. If $R_n \neq \emptyset$, then we denote by $r_n = r_n(a, b)$ the maximal real zero of $G_n(x)$. Note that the polynomial $G_n(x)$ is monic. If there exists a real number r such that $G_n(r) < 0$, then $R_n \neq \emptyset$ and $r_n > r$. Conversely, if $R_n \neq \emptyset$ and $r > r_n$, then $G_n(r) > 0$ (see, e.g., [8], Lemma 2.2A). When n is odd, we have $R_n \neq \emptyset$ since $G_n(x)$ is the polynomial of degree n. When n is even and $a \leq 0$, we have $R_n \neq \emptyset$ for $n \geq 2$ since $G_n(0) = a$. What remains to consider is the case when n is even and a > 0.

The following lemma is a special case of Formula 4.1 in [8]

Lemma 3.1: If $R_n \neq \emptyset$, then $G_{n+2}(r_n) = -G_{n-2}(r_n)$.

Lemma 3.2: Suppose that $R_m \neq \emptyset$ and $G_{m+2}(r_m) < 0$ for some m. Then $R_{m+2k} \neq \emptyset$ and r_{m+2k} is monotonically increasing for $k = 0, 1, 2, \ldots$

Proof: From $G_{m+2}(r_m) < 0$ it follows that $R_{m+2} \neq \emptyset$ and $r_{m+2} > r_m$. Now assume that $r_{m+2k} > r_{m+2(k-1)}$. Then $G_{m+2(k-1)}(r_{m+2k}) > 0$. So $G_{m+2(k+1)}(r_{m+2k}) < 0$ by Lemma 3.1. This yields $R_{m+2(k+1)} \neq \emptyset$ and $r_{m+2(k+1)} > r_{m+2k}$. Thus the statement holds by induction. \square

Remark 3.1: Note that $r_1 = -b$ and $G_3(r_1) = -ab$. If ab > 0, then r_{2n-1} is monotonically increasing for $n \ge 1$.

Corollary 3.1: Suppose that a > 0 and that $R_{2m} \neq \emptyset$ for some m. Then $R_{2n} \neq \emptyset$ and r_{2n} is monotonically increasing for $n \ge m$.

Proof: Without loss of generality, we may assume that m is the smallest index such that $R_{2m} \neq \emptyset$. Then $m \ge 1$ and $G_{2(m-1)}(r_{2m}) > 0$. Thus $G_{2(m+1)}(r_{2m}) < 0$, and the statement follows from Lemma 3.2. \Box

Remark 3.2: If a > 0 and $b^2 - 4a \ge 0$, then $G_2(x) = x^2 + bx + a$ has real zeros. Thus $R_{2n} \ne \emptyset$ and r_{2n} is monotonically increasing for $n \ge 1$.

Denote

$$c(x) = c_1(x)c_2(x) = 4[(a-1)x^2 + (a-2)bx + a^2 - b^2].$$
(3)

If a = 1 and $b \neq 0$, then $c(x) = 4(-bx + 1 - b^2)$ is linear and has unique zero:

$$\xi_0 = (1 - b^2)/b.$$

If $a \neq 1$, then c(x) is quadratic with the discriminant

$$[(a-2)b]^2 - 4(a-1)(a^2 - b^2) = a^2(b^2 - 4a + 4).$$

Define

$$\Delta = b^2 - 4a + 4.$$

If $\Delta \ge 0$, then c(x) = 0 has two real roots:

$$\begin{cases} \xi_1 = [b(2-a) + a\sqrt{\Delta}]/2(a-1), \\ \xi_2 = [b(2-a) - a\sqrt{\Delta}]/2(a-1). \end{cases}$$

Theorem 3.1: Let a > 0. Then there exists n such that $R_{2n} \neq \emptyset$ if and only if

- (i) a = 1 and |b| > 1, or
- (ii) a > 1 and $\Delta > 0$.

Proof: Note that $G_n(a, b; x) = (-1)^n G_n(a, -b; -x)$. Hence $R_n(a, b) \neq \emptyset$ and $r \in R_n(a, b)$ imply that $R_n(a, -b) \neq \emptyset$ and $-r \in R_n(a, -b)$. Thus it suffices to consider the case $b \ge 0$. Now let $a \ge 1$ and $b \ge 0$. Then $G_{2n}(x) > 0$ for $x \ge 0$ since $G_{2n}(x)$ has nonnegative coefficients and positive constant term a. When x < 0, we have

$$e_1(x) = a\sqrt{x^2 + 4 + (2 - a)x + 2b} > (2 - a)|x| + (2 - a)x \ge 0.$$

If $c_2(x) \ge 0$ for all x < 0, then $G_{2n}(x) > 0$ for all x < 0 from (2). Hence $R_{2n} = \emptyset$. On the other hand, if $c_2(r) < 0$ for some r < 0, then $G_{2n}(r) < 0$ for sufficiently large n from (2) (since $|\lambda_1(r)| < 1$ and $|\lambda_2(r)| > 1$). Hence $R_{2n} \ne \emptyset$. Note that $c_2(x)$ has the same sign as that of $c(x) = c_1(x)c_2(x)$. So we need only check the sign of c(x) for x < 0.

<u>Case:</u> a = 1. If b = 0 or b = 1, then c(x) = 4 or c(x) = -4x. Hence $R_{2n} = \emptyset$. If b > 1, then c(x) < 0 for $x \in (\xi_0, 0)$. Hence $R_{2n} \neq \emptyset$ for sufficiently large n.

<u>Case:</u> $a \ge 2$. If $\Delta \le 0$, then $c(x) \ge 0$ from (3). Hence $R_{2n} = \emptyset$. If $\Delta > 0$, then c(x) has two real zeros ξ_1 and ξ_2 . Clearly, c(x) < 0 for $x \in (\xi_2, \min\{0, \xi_1\})$. Hence $R_{2n} \ne \emptyset$ for sufficiently large n.

Thus the proof of theorem is complete. \Box

Remark 3.3: If a > 0 and b = 0, then it follow easily from (1) by induction that

$$G_{2n}(x) = \sum_{i=0}^{n} a_i x^{2i}, \quad G_{2n+1}(x) = x \sum_{i=0}^{n} b_i x^{2i},$$

where a_i, b_i are nonnegative and $a_0 = b_0 = a > 0$. Thus $R_{2n} = \emptyset$ and $R_{2n+1} = \{0\}$. In particular, the Fibonacci polynomials $F_n(x) = G_{n-1}(1,0;x)$ have no real zeros for n odd and have unique real zero 0 for n even, and the Lucas polynomials $L_n(x) = G_n(2,0;x)$ have no real zeros for n even and have unique real zero 0 for n odd, which are the well-known results (see. e.g., [3]).

We conclude this section as follows.

Theorem 3.2: There exists m such that $R_n \neq \emptyset$ for all $n \geq m$ if and only if one of the following cases occurs:

(i) $a \le 0$; (ii) a = 1 and |b| > 1; (iii) a > 1 and $b^2 > 4(a - 1)$.

4. ASYMPTOTIC BEHAVIOR OF MAXIMAL REAL ZEROS

In [8], G. A. Moore considered the limiting behavior of the sequence $r_n(-1, -1)$ which are called "golden numbers". He confirmed an implication of computer analysis that $r_{2n-1}(-1, -1)$

is monotonically increasing and convergent to 3/2 from below, while $r_{2n}(-1, -1)$ is monotonically decreasing and convergent to 3/2 from above. In [11], the authors showed that for a < 0the sequence $r_n(a, a)$ has the same monotonicity as $r_n(-1, -1)$ and instead of 3/2 the limit is a(2-a)/(a-1). In this section we investigate the asymptotic behavior of $r_n(a, b)$ in general.

Lemma 4.1: Suppose that $\lim_{k\to+\infty} r_{n_k} = \xi$.

- (a) If $\xi > 0$, then $c_1(\xi) = 0$.
- (b) If $\xi < 0$, then $c_2(\xi) = 0$.

Proof: We only show (a) since (b) can be proved by a similar argument.

Assume that $\xi > 0$. Then there exists r > 0 such that $r_{n_k} > r$ for sufficiently large k. Thus

$$|\lambda_2(r_{n_k})| = \frac{1}{\lambda_1(r_{n_k})} = \frac{2}{r_{n_k} + \sqrt{r_{n_k}^2 + 4}} < \frac{2}{r + \sqrt{r^2 + 4}} < 1.$$

From (2) and $G_{n_k}(r_{n_k}) = 0$ it follows that

$$c_1(r_{n_k}) = (-1)^{n_k + 1} c_2(r_{n_k}) \lambda_2^{2n_k}(r_{n_k}).$$

Letting $k \to +\infty$, we then obtain $c_1(\xi) = 0$, as required. \square

Theorem 4.1: Suppose that a < 0.

- (a) If $a + b \ge 0$, then r_{2n} is monotonically decreasing and convergent to 0 and r_{2n-1} is monotonically decreasing and convergent to ξ_2 .
- (b) If a + b < 0, then r_{2n} is monotonically decreasing and convergent to ξ_1 and r_{2n-1} is monotonically increasing and convergent to ξ_1 .

Proof: For our purposes we need to make further exploration for $c_1(x)$ and $c_2(x)$. We have $c'_1(x) = 2 - a(1 - x/\sqrt{x^2 + 4}) > 0$. Also, $\lim_{x \to -\infty} c_1(x) = -\infty$ since $c_1(x) = a(\sqrt{x^2 + 4} + x) + 2(1 - a)x + 2b$, and $\lim_{x \to +\infty} c_1(x) = +\infty$ since $c_1(x) = a(\sqrt{x^2 + 4} - x) + 2x + 2b$. Thus $c_1(x)$ is strictly increasing and has unique real zero ζ_1 . Similarly, $c_2(x)$ is strictly decreasing and has unique real zero ζ_2 . However, $c_1(x) + c_2(x) = 2a\sqrt{x^2 + 4} < 0$. In particular, $c_2(\zeta_1) < 0$. Hence $\zeta_1 > \zeta_2$. On the other hand, ζ_1 and ζ_2 are also the zeros of $c(x) = c_1(x)c_2(x)$. Consequently $\zeta_1 = \xi_1$ and $\zeta_2 = \xi_2$.

Even-Indices Sequence.

Note that $G_{2n}(0) = a < 0$ and $G_{2n}(\xi_1) = c_2(\xi_1)\lambda_1^{2n}(\xi_1) < 0$. Hence $r_{2n} > \max\{0, \xi_1\}$. It implies that

$$c_1(r_{2n}) > 0, \ c_2(r_{2n}) < 0, \ \lambda_1(r_{2n}) > 0, \ \lambda_2(r_{2n}) < 0.$$

By (2), $G_{2n-1}(r_{2n}) > 0$. Putting $x = r_{2n}$ in $G_{2n}(x) = xG_{2n-1}(x) + G_{2(n-1)}(x)$, we obtain $G_{2(n-1)}(r_{2n}) < 0$. This yields $r_{2(n-1)} > r_{2n}$. Hence the sequence r_{2n} is monotonically decreasing and therefore converging since the sequence is bounded by Theorem 2.1. Let $\lim_{n\to+\infty} r_{2n} = \xi$. Then $\xi \ge \max\{0,\xi_1\}$ since $r_{2n} > \max\{0,\xi_1\}$. Thus $\xi = \max\{0,\xi_1\}$ by Lemma 4.1(a).

Odd-Indices Sequence.

Assume that $x \ge \xi_1$ or $x \le \xi_2$. Then $c_1(x)c_2(x) \le 0$ by (3). Also, $c_1(x)$ and $c_2(x)$ are not equal to zero simultaneously since $c_1(x) + c_2(x) = 2a\sqrt{x^2 + 4} \ne 0$. On the other hand,

 $\lambda_1(x)\lambda_2(x) = -1$. It follows that $G_{2n-1}(x) \neq 0$ from (2). Thus $r_{2n-1} \in (\xi_2, \xi_1)$. When $x \in (\xi_2, \xi_1)$, we have $c_1(x) < 0$ and $c_2(x) < 0$, so $G_{2n}(x) < 0$. Next we distinguish two cases.

Case 1: $\xi_1 \leq 0$. We have $r_{2n+1} < 0$. Putting $x = r_{2n+1}$ in $G_{2n+1}(x) = xG_{2n}(x) + G_{2n-1}(x)$, we obtain $G_{2n-1}(r_{2n+1}) < 0$.

Hence $r_{2n-1} > r_{2n+1}$ and the sequence r_{2n-1} is therefore monotonically decreasing. Thus r_{2n-1} converges to ξ_2 by Lemma 4.1(b).

Case 2: $\xi_1 > 0$. Let $r \in (\max\{0, \xi_2\}, \xi_1)$. Then $c_1(r) < 0, \lambda_1(r) > 1$ and $|\lambda_2(r)| < 1$. By (2), $G_{2n-1}(r) < 0$ for sufficiently large *n*. So $r_{2n-1} > r > 0$. Putting $x = r_{2n-1}$ in $G_{2n+1}(x) = xG_{2n}(x) + G_{2n-1}(x)$, we obtain $G_{2n+1}(r_{2n-1}) < 0$. It follows that r_{2n-1} is monotonically increasing from Lemma 3.2. Thus r_{2n-1} converges to ξ_1 by Lemma 4.1(a).

Finally, note that $c_1(0) = 2(a+b)$. Hence $\xi_1 \leq 0$ if $a+b \geq 0$ and $\xi_1 > 0$ if a+b < 0. This completes our proof. \Box

For the case a > 0, we give the following result but omit its proof for the sake of brevity. **Theorem 4.2**: Suppose that a = 1 and |b| > 1.

- (a) If b < -1, then r_{2n} is monotonically increasing and convergent to ξ_0 and r_{2n-1} is monotonically decreasing and convergent to ξ_0 .
- (b) If b > 1, then r_{2n} is monotonically increasing and convergent to 0 and r_{2n-1} is monotonically increasing and convergent to ξ₀. Suppose that a > 1 and Δ > 0.
- (c) If b < 0, then r_{2n} is monotonically increasing and convergent to ξ_1 and r_{2n-1} is monotonically decreasing and convergent to ξ_1 .
- (d) If 0 < b < a, then r_{2n} is monotonically increasing and convergent to ξ_1 and r_{2n-1} is monotonically increasing and convergent to 0.
- (e) If $b \ge a$, then r_{2n} is monotonically increasing and convergent to 0 and r_{2n-1} is monotonically increasing and convergent to ξ_2 .

Remark 4.1: From Theorem 4.1 and 4.2 we can conclude that the sequence r_n is convergent (to ξ) if and only if one of the following cases occurs:

$$\begin{array}{l} \underline{\text{Case: } a < 0 \text{ and } a + b < 0.} \quad \xi = \xi_1.\\ \underline{\text{Case: } a < 0 \text{ and } b = -a.} \quad \xi = 0.\\ \underline{\text{Case: } a = 1 \text{ and } b < -1.} \quad \xi = \xi_0.\\ \underline{\text{Case: } a > 1, b < 0 \text{ and } \Delta > 0.} \quad \xi = \xi_1.\\ \underline{\text{Case: } a = b > 2.} \quad \xi = 0. \end{array}$$

Remark 4.2: Recall $R_n(a, b) \neq \emptyset$ and $r \in R_n(a, b)$ imply that $R_n(a, -b) \neq \emptyset$ and $-r \in R_n(a, -b)$. Let $\overline{r}_n(a, b)$ denote the minimal real zero of $G_n(a, b; x)$. Then $\overline{r}_n(a, b) = -r_n(a, -b)$. Thus we may actually know the asymptotic behavior of the minimal real zeros of $G_n(x)$. For example, $r_{2n-1}(-1, -1)$ is monotonically decreasing and convergent to 3/2, so $\overline{r}_{2n-1}(-1, 1)$ is monotonically increasing and convergent to -3/2.

ACKNOWLEDGMENT

The authors wish to thank the anonymous referee for valuable suggestions and corrections which have improved the original manuscript.

346

REFERENCES

- K. E. Atkinson. An Introduction to Numerical Analysis. New York: John Wiley & Sons, Inc. 1978.
- [2] N. Georgieva. "Distribution of the Zeros of One Class of Polynomials." The Fibonacci Quarterly 13.4 (1975): 312–314.
- [3] V. E. Hoggatt, Jr. & M. Bicknell. "Roots of Fibonacci Polynomials." The Fibonacci Quarterly 11.3 (1973): 271-74.
- [4] V. E. Hoggatt, Jr. & M. Bicknell. "Generalized Fibonacci Polynomials." The Fibonacci Quarterly 11.5 (1973): 457-65.
- [5] Mátyás. "The Asymptotic Behavior of the Real Roots of Fibonacci-like Polynomials." Acta Acda. Paedagog. Agriensis Sect. Mat. (N.S.) 24 (1997): 55-61.
- [6] Mátyás. "Bounds for the Zeros of Fibonacci-like Polynomials." Acta Acda. Paedagog. Agriensis Sect. Mat.(N.S.) 25 (1998): 15-20.
- [7] G. A. Moore. "A Fibonacci Polynomial Sequence Defined by Multidimensional Continued Fractions; and Higher-order Golden Ratios." *The Fibonacci Quarterly* **31.4** (1993): 354-64.
- [8] G. A. Moore. "The Limit of Golden Numbers Is 3/2." The Fibonacci Quarterly 32.3 (1994): 211-17.
- [9] H. Prodinger. "The Asymptotic Behavior of the Golden Numbers." The Fibonacci Quarterly **34.3** (1996): 224-225.
- [10] P. E. Ricci. "Generalized Lucas Polynomials and Fibonacci Polynomials." Riv. Mat. Univ. Parma 4 (1995): 137-146.
- [11] H. Q. Yu, Y. Wang & M. F. He. "On the Limit of Generalized Golden Numbers." The Fibonacci Quarterly 34.4 (1996): 320-22.

AMS Classification Numbers: 11B39, 11B37, 30C15

 $\mathbf{A} \mathbf{A} \mathbf{A}$

347