
ZEROS OF A CLASS OF
FIBONACCI-TYPE POLYNOMIALS

Yi Wang
Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, China

Mingfeng He
Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, China

(Submitted March 2002-Final Revision May 2003)

1. INTRODUCTION

Let a, b be two integers and a 6= 0. Consider a class of Fibonacci-type polynomials
Gn(x) = Gn(a, b;x) defined by the recursive relation

Gn+2(x) = xGn+1(x) +Gn(x) (1)

with the initial values G0(x) = a and G1(x) = x + b. The polynomials Gn−1(1, 0;x) and
Gn(2, 0;x)(n ≥ 1) are just the usual Fibonacci polynomials Fn(x) and the Lucas polynomials
Ln(x), respectively. Our concern in this paper is to study some of the properties of the zeros
of the Fibonacci-type polynomials Gn(a, b;x).

The zeros of Fn(x) and Ln(x) have been given explicitly by V. E. Hoggatt, Jr. and M.
Bicknell [3] and N. Georgieva [2] (see MR52#5634 for corrections by Reviewer). However there
are no general formulae for the zeros of the Fibonacci-type polynomials. There have been quite
a few papers concerned the properties of the zeros of the Fibonacci-type polynomials in recent
years. For example, G. A. Moore [8] and H. Prodinger [9] investigated the asymptotic behavior
of the maximal real zeros of Gn(−1,−1;x) respectively. The authors et al. [11] and F. Mátyás
[5] investigated the same problem for Gn(a, a;x)(a < 0) and Gn(a,±a;x)(a 6= 0) respectively.
In [6], F. Mátyás showed that the absolute values of complex zeros of polynomials Gn(a, b;x)
do not exceed max{2, |a|+ |b|}, which generalizes the result of P. E. Ricci [10] who investigated
the problem in the case a = b = 1.

In the present paper, we first give a new bound 1 + max{|a|, |b|} for the absolute values
of the zeros of Gn(a, b;x) by using the Gerŝchgorin’s Cycle Theorem in §2. Our method can
also obtain Mátyás’ bound. Then in §3 we present a necessary and sufficient condition that
Gn(a, b;x) has real zeros. Finally in §4 we investigate the asymptotic behavior of the maximal
real zeros of Gn(a, b;x).

For our purposes, we need the Binet-form expression of Gn(x). Following standard pro-
cedures, we easily obtain

Gn(x) = [c1(x)λn
1 (x) + c2(x)λn

2 (x)]/2
√
x2 + 4, (2)

where {
c1(x) = a

√
x2 + 4 + (2− a)x+ 2b

c2(x) = a
√
x2 + 4− (2− a)x− 2b

and {
λ1(x) = (x+

√
x2 + 4)/2

λ2(x) = (x−
√
x2 + 4)/2
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are the roots of the associated characteristic equation of the sequence Gn(x):

λ2 − xλ− 1 = 0.

2. BOUNDS FOR ZEROS

Using the recursive relation (1) and an induction argument, it can be checked easily that

Gn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x+ b −1
a x −1

1 x −1
. . . . . . . . .

1 x −1
1 x −1

1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
for n ≥ 2. Thus Gn(x) can be viewed as the characteristic polynomial of the n× n matrix

Mn =



−b 1
−a 0 1

−1 0 1
. . . . . . . . .

−1 0 1
−1 0 1

−1 0


,

and the zeros of Gn(x) are therefore the eigenvalues of Mn. For the location of the eigenvalues
of a matrix, we have the following well-known proposition due to Gerŝchgorin (see, e.g., [1],
Theorem 9.1, p. 500). For a matrix A = (aij) of order n, define

ri =
∑

1≤j≤n
j 6=i

|aij |, i = 1, 2, . . . , n

and let Zi denote the circle in the complex plane C with center aii and radius ri (which is
called the ith Gerŝchgorin circle of A), that is

Zi = {z ∈ C : |z − aii| ≤ ri}.

Gerŝchgorin’s Cycle Theorem: Let A = (aij) be a matrix of order n and let λ be an
eigenvalue of A. Then λ belongs to one of the circles Zi.

¿From this theorem it follows that the eigenvalues of the matrix Mn must be contained
in the circles

|λ+ b| ≤ 1, |λ| ≤ |a|+ 1, |λ| ≤ 2, |λ| ≤ 1.

Note that a is a nonzero integer. Hence we have the following.
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Theorem 2.1: The zeros of Gn(a, b;x) satisfy |x| ≤ 1 + max{|a|, |b|}.
Note that the transpose MT of a matrix M has the same eigenvalues as M . Hence the

zeros of Gn(a, b;x) are also the eigenvalues of the matrix MT
n . Thus we obtain the following

result by using Gerŝchgorin’s Cycle Theorem again, which corresponds just with the result of
Mátyás[6].
Theorem 2.2: The zeros of Gn(a, b;x) satisfy |x| ≤ max{2, |a|+ |b|}.
Example 2.1: From Theorem 2.1 and 2.2 it follows that the zeros of the Fibonacci polynomials
Fn(x) = Gn−1(1, 0;x) and the Lucas polynomials Ln(x) = Gn(2, 0;x) satisfy |x| ≤ 2, which
can also be obtained directly from their expression given in [3].

3. EXISTENCE OF REAL ZEROS

In this section we investigate the existence of real zeros of Gn(x). Denote by Rn = Rn(a, b)
the set of real zeros of Gn(x) = Gn(a, b;x). In particular, Rn = ∅ if Gn(x) has no real zeros.
If Rn 6= ∅, then we denote by rn = rn(a, b) the maximal real zero of Gn(x). Note that the
polynomial Gn(x) is monic. If there exists a real number r such that Gn(r) < 0, then Rn 6= ∅
and rn > r. Conversely, if Rn 6= ∅ and r > rn, then Gn(r) > 0 (see, e.g., [8], Lemma 2.2A).
When n is odd, we have Rn 6= ∅ since Gn(x) is the polynomial of degree n. When n is even
and a ≤ 0, we have Rn 6= ∅ for n ≥ 2 since Gn(0) = a. What remains to consider is the case
when n is even and a > 0.

The following lemma is a special case of Formula 4.1 in [8]
Lemma 3.1: If Rn 6= ∅, then Gn+2(rn) = −Gn−2(rn).
Lemma 3.2: Suppose that Rm 6= ∅ and Gm+2(rm) < 0 for some m. Then Rm+2k 6= ∅ and
rm+2k is monotonically increasing for k = 0, 1, 2, . . . .

Proof: From Gm+2(rm) < 0 it follows that Rm+2 6= ∅ and rm+2 > rm. Now assume
that rm+2k > rm+2(k−1). Then Gm+2(k−1)(rm+2k) > 0. So Gm+2(k+1)(rm+2k) < 0 by Lemma
3.1. This yields Rm+2(k+1) 6= ∅ and rm+2(k+1) > rm+2k. Thus the statement holds by
induction.
Remark 3.1: Note that r1 = −b and G3(r1) = −ab. If ab > 0, then r2n−1 is monotonically
increasing for n ≥ 1.
Corollary 3.1: Suppose that a > 0 and that R2m 6= ∅ for some m. Then R2n 6= ∅ and r2n is
monotonically increasing for n ≥ m.

Proof: Without loss of generality, we may assume that m is the smallest index such that
R2m 6= ∅. Then m ≥ 1 and G2(m−1)(r2m) > 0. Thus G2(m+1)(r2m) < 0, and the statement
follows from Lemma 3.2.
Remark 3.2: If a > 0 and b2−4a ≥ 0, then G2(x) = x2 +bx+a has real zeros. Thus R2n 6= ∅
and r2n is monotonically increasing for n ≥ 1.

Denote
c(x) = c1(x)c2(x) = 4[(a− 1)x2 + (a− 2)bx+ a2 − b2]. (3)

If a = 1 and b 6= 0, then c(x) = 4(−bx+ 1− b2) is linear and has unique zero:

ξ0 = (1− b2)/b.
If a 6= 1, then c(x) is quadratic with the discriminant

[(a− 2)b]2 − 4(a− 1)(a2 − b2) = a2(b2 − 4a+ 4).

343



ZEROS OF A CLASS OF FIBONACCI-TYPE POLYNOMIALS

Define
∆ = b2 − 4a+ 4.

If ∆ ≥ 0, then c(x) = 0 has two real roots:{
ξ1 = [b(2− a) + a

√
∆]/2(a− 1),

ξ2 = [b(2− a)− a
√

∆]/2(a− 1).

Theorem 3.1: Let a > 0. Then there exists n such that R2n 6= ∅ if and only if
(i) a = 1 and |b| > 1, or
(ii) a > 1 and ∆ > 0.
Proof: Note that Gn(a, b;x) = (−1)nGn(a,−b;−x). Hence Rn(a, b) 6= ∅ and r ∈ Rn(a, b)

imply that Rn(a,−b) 6= ∅ and −r ∈ Rn(a,−b). Thus it suffices to consider the case b ≥ 0.
Now let a ≥ 1 and b ≥ 0. Then G2n(x) > 0 for x ≥ 0 since G2n(x) has nonnegative coefficients
and positive constant term a. When x < 0, we have

c1(x) = a
√
x2 + 4 + (2− a)x+ 2b > (2− a)|x|+ (2− a)x ≥ 0.

If c2(x) ≥ 0 for all x < 0, then G2n(x) > 0 for all x < 0 from (2). Hence R2n = ∅. On the
other hand, if c2(r) < 0 for some r < 0, then G2n(r) < 0 for sufficiently large n from (2) (since
|λ1(r)| < 1 and |λ2(r)| > 1). Hence R2n 6= ∅. Note that c2(x) has the same sign as that of
c(x) = c1(x)c2(x). So we need only check the sign of c(x) for x < 0.

Case: a = 1. If b = 0 or b = 1, then c(x) = 4 or c(x) = −4x. Hence R2n = ∅. If b > 1,
then c(x) < 0 for x ∈ (ξ0, 0). Hence R2n 6= ∅ for sufficiently large n.

Case: a ≥ 2. If ∆ ≤ 0, then c(x) ≥ 0 from (3). Hence R2n = ∅. If ∆ > 0, then c(x)
has two real zeros ξ1 and ξ2. Clearly, c(x) < 0 for x ∈ (ξ2,min{0, ξ1}). Hence R2n 6= ∅ for
sufficiently large n.

Thus the proof of theorem is complete.
Remark 3.3: If a > 0 and b = 0, then it follow easily from (1) by induction that

G2n(x) =
n∑

i=0

aix
2i, G2n+1(x) = x

n∑
i=0

bix
2i,

where ai, bi are nonnegative and a0 = b0 = a > 0. Thus R2n = ∅ and R2n+1 = {0}. In
particular, the Fibonacci polynomials Fn(x) = Gn−1(1, 0;x) have no real zeros for n odd and
have unique real zero 0 for n even, and the Lucas polynomials Ln(x) = Gn(2, 0;x) have no
real zeros for n even and have unique real zero 0 for n odd, which are the well-known results
(see. e.g., [3]).

We conclude this section as follows.
Theorem 3.2: There exists m such that Rn 6= ∅ for all n ≥ m if and only if one of the
following cases occurs:

(i) a ≤ 0; (ii) a = 1 and |b| > 1; (iii) a > 1 and b2 > 4(a− 1).

4. ASYMPTOTIC BEHAVIOR OF MAXIMAL REAL ZEROS

In [8], G. A. Moore considered the limiting behavior of the sequence rn(−1,−1) which are
called “golden numbers”. He confirmed an implication of computer analysis that r2n−1(−1,−1)
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is monotonically increasing and convergent to 3/2 from below, while r2n(−1,−1) is monotoni-
cally decreasing and convergent to 3/2 from above. In [11], the authors showed that for a < 0
the sequence rn(a, a) has the same monotonicity as rn(−1,−1) and instead of 3/2 the limit is
a(2− a)/(a− 1). In this section we investigate the asymptotic behavior of rn(a, b) in general.
Lemma 4.1: Suppose that limk→+∞ rnk

= ξ.
(a) If ξ > 0, then c1(ξ) = 0.
(b) If ξ < 0, then c2(ξ) = 0.
Proof: We only show (a) since (b) can be proved by a similar argument.
Assume that ξ > 0. Then there exists r > 0 such that rnk

> r for sufficiently large k.
Thus

|λ2(rnk
)| = 1

λ1(rnk
)

=
2

rnk
+
√
r2nk

+ 4
<

2
r +
√
r2 + 4

< 1.

From (2) and Gnk
(rnk

) = 0 it follows that

c1(rnk
) = (−1)nk+1c2(rnk

)λ2nk
2 (rnk

).

Letting k → +∞, we then obtain c1(ξ) = 0, as required.
Theorem 4.1: Suppose that a < 0.
(a) If a + b ≥ 0, then r2n is monotonically decreasing and convergent to 0 and r2n−1 is

monotonically decreasing and convergent to ξ2.
(b) If a + b < 0, then r2n is monotonically decreasing and convergent to ξ1 and r2n−1 is

monotonically increasing and convergent to ξ1.
Proof: For our purposes we need to make further exploration for c1(x) and c2(x). We

have c′1(x) = 2−a(1−x/
√
x2 + 4) > 0. Also, limx→−∞ c1(x) = −∞ since c1(x) = a(

√
x2 + 4+

x)+2(1−a)x+2b, and limx→+∞ c1(x) = +∞ since c1(x) = a(
√
x2 + 4−x)+2x+2b. Thus c1(x)

is strictly increasing and has unique real zero ζ1. Similarly, c2(x) is strictly decreasing and has
unique real zero ζ2. However, c1(x)+ c2(x) = 2a

√
x2 + 4 < 0. In particular, c2(ζ1) < 0. Hence

ζ1 > ζ2. On the other hand, ζ1 and ζ2 are also the zeros of c(x) = c1(x)c2(x). Consequently
ζ1 = ξ1 and ζ2 = ξ2.

Even-Indices Sequence.

Note that G2n(0) = a < 0 and G2n(ξ1) = c2(ξ1)λ2n
1 (ξ1) < 0. Hence r2n > max{0, ξ1}. It

implies that
c1(r2n) > 0, c2(r2n) < 0, λ1(r2n) > 0, λ2(r2n) < 0.

By (2), G2n−1(r2n) > 0. Putting x = r2n in G2n(x) = xG2n−1(x) + G2(n−1)(x), we ob-
tain G2(n−1)(r2n) < 0. This yields r2(n−1) > r2n. Hence the sequence r2n is monotoni-
cally decreasing and therefore converging since the sequence is bounded by Theorem 2.1. Let
limn→+∞ r2n = ξ. Then ξ ≥ max{0, ξ1} since r2n > max{0, ξ1}. Thus ξ = max{0, ξ1} by
Lemma 4.1(a).

Odd-Indices Sequence.
Assume that x ≥ ξ1 or x ≤ ξ2. Then c1(x)c2(x) ≤ 0 by (3). Also, c1(x) and c2(x) are

not equal to zero simultaneously since c1(x) + c2(x) = 2a
√
x2 + 4 6= 0. On the other hand,
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λ1(x)λ2(x) = −1. It follows that G2n−1(x) 6= 0 from (2). Thus r2n−1 ∈ (ξ2, ξ1). When
x ∈ (ξ2, ξ1), we have c1(x) < 0 and c2(x) < 0, so G2n(x) < 0. Next we distinguish two cases.

Case 1: ξ1 ≤ 0. We have r2n+1 < 0. Putting x = r2n+1 inG2n+1(x) = xG2n(x)+G2n−1(x),
we obtain G2n−1(r2n+1) < 0.

Hence r2n−1 > r2n+1 and the sequence r2n−1 is therefore monotonically decreasing. Thus
r2n−1 converges to ξ2 by Lemma 4.1(b).

Case 2: ξ1 > 0. Let r ∈ (max{0, ξ2}, ξ1). Then c1(r) < 0, λ1(r) > 1 and |λ2(r)| < 1.
By (2), G2n−1(r) < 0 for sufficiently large n. So r2n−1 > r > 0. Putting x = r2n−1 in
G2n+1(x) = xG2n(x) + G2n−1(x), we obtain G2n+1(r2n−1) < 0. It follows that r2n−1 is
monotonically increasing from Lemma 3.2. Thus r2n−1 converges to ξ1 by Lemma 4.1(a).

Finally, note that c1(0) = 2(a+ b). Hence ξ1 ≤ 0 if a+ b ≥ 0 and ξ1 > 0 if a+ b < 0. This
completes our proof.

For the case a > 0, we give the following result but omit its proof for the sake of brevity.
Theorem 4.2: Suppose that a = 1 and |b| > 1.
(a) If b < −1, then r2n is monotonically increasing and convergent to ξ0 and r2n−1 is mono-

tonically decreasing and convergent to ξ0.
(b) If b > 1, then r2n is monotonically increasing and convergent to 0 and r2n−1 is monoton-

ically increasing and convergent to ξ0.
Suppose that a > 1 and ∆ > 0.

(c) If b < 0, then r2n is monotonically increasing and convergent to ξ1 and r2n−1 is monoton-
ically decreasing and convergent to ξ1.

(d) If 0 < b < a, then r2n is monotonically increasing and convergent to ξ1 and r2n−1 is
monotonically increasing and convergent to 0.

(e) If b ≥ a, then r2n is monotonically increasing and convergent to 0 and r2n−1 is monoton-
ically increasing and convergent to ξ2.

Remark 4.1: From Theorem 4.1 and 4.2 we can conclude that the sequence rn is convergent
(to ξ) if and only if one of the following cases occurs:

Case: a < 0 and a+ b < 0. ξ = ξ1.
Case: a < 0 and b = −a. ξ = 0.
Case: a = 1 and b < −1. ξ = ξ0.
Case: a > 1, b < 0 and ∆ > 0. ξ = ξ1.
Case: a = b > 2. ξ = 0.

Remark 4.2: Recall Rn(a, b) 6= ∅ and r ∈ Rn(a, b) imply that Rn(a,−b) 6= ∅ and −r ∈
Rn(a,−b). Let rn(a, b) denote the minimal real zero of Gn(a, b;x). Then rn(a, b) = −rn(a,−b).
Thus we may actually know the asymptotic behavior of the minimal real zeros of Gn(x). For
example, r2n−1(−1,−1) is monotonically decreasing and convergent to 3/2, so r2n−1(−1, 1) is
monotonically increasing and convergent to −3/2.
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