ON THE INFINITUDE OF PRIMES OF THE FORM $3 k+1$

Neville Robbins

Mathematics Department, San Francisco State University, San Francisco, CA 94132
(Submitted May 2002)
Let a, b be natural numbers such that $(a, b)=1$. Dirichlet's theorem (whose proof requires advanced methods) states that there are infinitely many primes of the form $a k+b$, where k is a natural number. The special case: $a=4, b=1$ can be proved by elementary means, making use of the properties of Fermat numbers, or of Fibonacci numbers. (See [1].) In this note, using a different second order linear recurrence, we dispose of the case: $a=3, b=1 .\left(\frac{m}{p}\right)$ denotes the Legendre symbol.
Theorem 1: There are infinitely many primes, p, such that $p \equiv 1(\bmod 3)$.
Proof: Consider the linear second order recurrence:

$$
u_{0}=0, u_{1}=1, u_{n}=u_{n-1}+3 u_{n-2} \quad \text { for } \quad n \geq 2
$$

Let the roots of the equation:

$$
\lambda^{2}-\lambda-3=0
$$

be: $\alpha=(1+\sqrt{13}) / 2, \beta=(1-\sqrt{13}) / 2$. Then

$$
\begin{equation*}
u_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \tag{1}
\end{equation*}
$$

It is easily established by induction on n that

$$
\begin{gather*}
3 \not \backslash u_{n} \quad \forall n \geq 1 \tag{2}\\
\left(u_{n}, u_{n-1}\right)=1 \quad \forall n \geq 2 \tag{3}\\
2 \mid u_{n} \quad \text { iff } \quad 3 \mid n \tag{4}\\
\alpha^{n}=\alpha u_{n}+u_{n-1}, \quad \beta^{n}=\beta u_{n}+u_{n-1} \tag{5}\\
u_{k n+r}=\sum_{j=0}^{k}\binom{k}{j} u_{n}^{j} u_{n-1}^{k-j} u_{r+j} . \tag{6}
\end{gather*}
$$

Using (6), we can prove

$$
\begin{equation*}
\left(u_{k n+r}, u_{n}\right)=u_{r} \tag{7}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
\left(u_{m}, u_{n}\right)=u_{(m, n)} . \tag{8}
\end{equation*}
$$

Another consequence of (1) is the identity:

$$
\begin{equation*}
u_{2 n+1}=u_{n+1}^{2}+3 u_{n}^{2} \tag{9}
\end{equation*}
$$

If p is an odd prime, then in view of (3) and (9), we have

$$
\begin{equation*}
p \left\lvert\, u_{2 n+1} \rightarrow\left(\frac{-3}{p}\right)=1 \rightarrow p \equiv 1 \quad(\bmod 3) .\right. \tag{10}
\end{equation*}
$$

To complete the proof, we need a subsequence of $\left\{u_{2 n+1}\right\}$ such that any pair of distinct terms is odd and relatively prime. Let

$$
w_{n}=u_{q_{n}}
$$

where $q_{1}=5, q_{2}=7, q_{3}=11, \cdots$, that is q_{n} is the $n^{t h}$ prime, starting with 5 . If the natural numbers m, n are distinct, then $w_{m}=u_{r}, w_{n}=u_{t}$ for distinct primes r, t so that

$$
\left(w_{m}, w_{n}\right)=\left(u_{r}, u_{t}\right)=u_{(r, t)}=u_{1}=1
$$

Since $u_{n}>1 \quad \forall n \geq 3$, we have $w_{n} \geq 1 \quad \forall n \geq 1$. Since each w_{n} has a prime divisor, p, such that $p \equiv 1(\bmod 3)$ and the members of $\left\{w_{n}\right\}$ are odd and pairwise relatively prime, we are done.
Remarks: Similarly, if $q>3$ is a given prime, by recourse to the second order linear recurrence:

$$
u_{0}=0, u_{1}=1, u_{n}=u_{n-1}+q u_{n-2} \quad \text { for } \quad n \geq 2
$$

one can prove that there are infinitely many primes, p, such that $\left(\frac{-q}{p}\right)=1$. In the case $q=5$, this yields infinitely many primes, p, such that $p \equiv 1,3,7$, or $9(\bmod 20)$.

REFERENCES

[1] N. Robbins. "On Fibonacci Numbers and Primes of the Form $4 k+1 . "$ The Fibonacci Quarterly 32 (1994): 15-16.

AMS Classification Numbers: 11B35

※ ※

