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1. A SURVEY ON RECURRENCE FORMULAE FOR SUMS WITH
BINOMIAL COEFFICIENTS AND A NEW FIVE-TERM FORMULA

Since Apery [1] has proved the irrationality of ζ(3) in 1979 by a linear series transformation
with powers of binomial coefficients, many mathematicians are interested in linear recurrences
for finite sums of powers of binomial coefficients. Apery’s proof is based on the recurrence
formula

(n+ 1)3 un+1 − (34n3 + 51n2 + 27n+ 5)un + n3 un−1 = 0 (1)

for the sum

un =
n∑
k=0

(
n

k

)2(
n+ k

k

)2

.

R. Askey and J.A.Wilson [2] found a three-term recurrence formula for

n∑
k=0

(
n

k

)(
n+ a+ d

k + d

)(
n+ k + b+ e

k + e

)(
n+ k + c+ f

k + f

)
,

where a+ d = b+ c. From this identity one can derive (1) by taking

a = b = c = d = e = f = 0 .

It is well-known that . . .

n∑
k=0

(
n

k

)(
n+ k

k

)2

satisfies a four-term recurrence formula:

(59n+ 35)(n− 1)2un−2 + (295n3 − 120n2 − 60n+ 35)un−1

+(2301n3 + 1365n2 − 376n− 240)un − 2(59n− 24)(n+ 1)2un+1 = 0 ;

n∑
k=0

(
n

k

)2(
n+ k

k

)
satisfies a three-term recurrence formula, [3]:

n2un−1 + (11n2 + 11n+ 3)un − (n+ 1)2un+1 = 0 ;

n∑
k=0

(
n

k

)3(
n+ k

k

)
satisfies a five-term recurrence formula, [2]:
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p1(n)un−2 + p2(n)un−1 + p3(n)un + p4(n)un+1 + p5(n)un+2 = 0

with integer polynomials p1, p2, p3, p4, p5 of degree 8;

n∑
k=0

(
n

k

)3

satisfies a three-term recurrence formula, [2], [7]:

8n2un−1 + (7n2 + 7n+ 2)un − (n+ 1)2un+1 = 0 ;

n∑
k=0

(
n

k

)4

satisfies a three-term recurrence formula, [2], [8]:

4n(4n− 1)(4n+ 1)un−1 + 2(2n+ 1)(3n2 + 3n+ 1)un − (n+ 1)3un+1 = 0 .

M.A. Perlstadt [13] has proved four-term recurrences for
n∑
k=0

(
n

k

)5

and
n∑
k=0

(
n

k

)6

by using a computer, namely

32(55n2 + 33n+ 6)(n− 1)4un−2

−(19415n6 − 27181n5 + 7453n4 + 3289n3 − 956n2 − 276n+ 96)un−1

−(1155n6 + 693n5 − 732n4 − 715n3 + 45n2 + 210n+ 56)un

+(55n2 − 77n+ 28)(n+ 1)4un+1 = 0

and

24(6n− 7)(2n− 1)(6n− 5)(91n3 + 91n2 + 35n+ 5)(n− 1)3un−2

−(153881n9 − 307762n8 + 185311n7 + 2960n6 − 31631n5 − 88n4 + 5239n3 − 610n2

−440n+ 100)un−1

−n(3458n8 + 1729n7 − 2947n6 − 2295n5 + 901n4 + 1190n3 + 52n2 − 228n− 60)un

+n(91n3 − 182n2 + 126n− 30)(n+ 1)5un+1 = 0 ,

respectively. A new approach to definite and indefinite summation problems is by the applica-
tion of algorithmic techniques for summation. Two of several powerful methods are known as
Gosper’s algorithm for indefinite hypergeometric summation as well as Zeilberger’s algorithm
for definite hypergeometric summation. In [11] the up-to-date algorithmic techniques are de-
scribed in detail and worked out using Maple programs. Particularly, in chapter 7 of the book
Zeilberger’s algorithm is introduced as an extension of Gosper’s algorithm with which one can
not only prove hypergeometric identities but also sum definite series in many cases, provided
that they represent hypergeometric terms. The corresponding Maple procedure is printed out
on page 100. In what follows, we apply Zeilberger’s algorithm to prove some results, but also
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introduce a very simple numeric algorithm using only standard Maple commands, which allows
to compute easily all the recurrence formulae given in this paper. First, let us consider the
sums

un,0 =
n∑
k=0

(
n

k

)2(
n+ k

k

)3

= 5F4

(
−n −n n+ 1 n+ 1 n+ 1
1 1 1 1 | 1

)
, (2)

un,1 =
n∑
k=0

k ·
(
n

k

)2(
n+ k

k

)3

= n2(n+ 1)3 · 5F4

(
−n+ 1 −n+ 1 n+ 2 n+ 2 n+ 2

2 2 2 2 | 1
)
. (3)

On the one side we shall state a linear recurrence formula for (2) resp. (3), on the other side
we prove a much simpler identity involving both sums. By Zeilberger’s algorithm, we first get
the following result.
Theorem 1: For all positive integers n the recurrence formulae

P1(n)un−2,0 + P2(n)un−1,0 + P3(n)un,0 + P4(n)un+1,0 + P5(n)un+2,0 = 0

and
Q1(n)un−2,1 +Q2(n)un−1,1 +Q3(n)un,1 +Q4(n)un+1,1 +Q5(n)un+2,1 = 0

hold for polynomials Pi(n), Qi(n) for i = 1, 2, 3, 4, 5. Particularly, one has:

P1(n) =

n2(n− 1)4(843719n6 + 4840551n5 + 11178979n4 + 13317705n3 + 8665902n2+

+2935212n+ 406064) ,

P2(n) =

n2(36279917n10 + 135583859n9 + 127047837n8 − 60969738n7 − 110574890n6+

+20533918n5 + 48708406n4 − 5364623n3 − 11899162n2 + 654644n+ 1218192) ,

P3(n) =

1736373702n12 + 9961853958n11 + 22277118313n10 + 23185704893n9 + 8094752075n8−

−5159542775n7 − 5379560162n6 − 735829596n5 + 854942060n4 + 330715196n3−

−27939752n2 − 33839440n− 4927520 ,

P4(n) =

−(n+ 1)2(109683470n10 + 629271630n9 + 1276828039n8 + 883221686n7 − 311491995n6−
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−543643850n5 + 7337532n4 + 118619820n3 + 524952n2 − 10038672n+ 143520) ,

P5(n) =

(n+ 1)2(n+ 2)4(843719n6 − 221763n5 − 367991n4 + 132919n3 + 36936n2 − 18952n+ 1196) ;

Q1(n) =

n3(n− 1)3(843719n8 + 6997005n7 + 25031348n6 + 50399270n5 + 62438227n4 + 48758733n3+

+23462050n2 + 6361792n+ 744400) ,

Q2(n) =

n2(n+ 1)(36279917n11 + 192031464n10 + 325366682n9 + 63867151n8 − 330040841n7−

−172445298n6 + 193400596n5 + 124585299n4 − 57601426n3 − 40293768n2 + 6706960n+

+4883264) ,

Q3(n) =

1736373702n14 + 12663462588n13 + 37617073049n12 + 56520762812n11 + 40640562631n10+

+4324668130n9 − 11874058437n8 − 4827274624n7 + 1559429331n6 + 752392334n5−

−460798228n4 − 194231560n3 + 70509632n2 + 46662400n+ 6653440 ,

Q4(n) =

−(n+ 1)2(109683470n12 + 690243710n11 + 1628605979n10 + 1620805286n9 + 286252536n8−

−554888138n7 − 210859869n6 + 104854206n5 + 36340108n4 − 26323720n3 − 7970880n2+

+4292352n+ 1589760) ,

Q5(n) =

(n+ 1)3(n+ 2)3(843719n8 + 247253n7 − 323555n6 − 99977n5 + 77252n4 + 18476n3−

−20240n2 − 1472n+ 2944) .

Assuming five-term recurrence formulae for un,0 and un,1, one can compute the coefficients
of the polynomials Pi and Qi, respectively, by the following simple Maple-procedure solving a
linear quadratic system of equations. Here is the procedure for un,0:

> with(linalg) :
> f := t→ sum(binomial(t, k)̂ 2 ∗ binomial(t+ k, k)̂ 3, k = 0..t) :
> g := 12 :
> p := 5 ∗ (1 + g) :
> h1 := (n,m)→ n+ floor((m− 1)/(1 + g)) :
> h2 := m→ −m mod(g + 1) :
> M := Matrix(p, p, (n,m)→ (n+ 2)̂ (h2(m)) ∗ f(h1(n,m))) :
> b := V ector[row](p, n→ 0) :
> x := linsolve(M, b);
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The coefficients ai,k of the polynomials

pi(x) =
g∑
k=0

ai,kx
g−k (i = 1, 2, 3, 4, 5)

are the unknowns of the homogeneous (p× p)-system. The matrix of the system is given by(
ngf(n− 2), ng−1f(n− 2), . . . , f(n− 2);ngf(n− 1), ng−1f(n− 1), . . . , f(n− 1);ngf(n), . . . ;

ngf(n+ 2), . . . , f(n+ 2))n=3,4,...,p+2 .

The output of the above Maple-procedure is a one-dimensional vector space in R
p. The

smallest nontrivial integer solution of this space (apart from its sign) gives the desired integer
coefficients

(a1,0, a1,1, . . . , a1,g; a2,0, . . . , a2,g; . . . ; a5,0, . . . , a5,g)
T
.

Choosing g smaller than 12, the system of equations has no nontrivial solution, which proves
that there are no polynomials in the five-term recurrence formula for un,0 having a degree
smaller than 12 each. Conversely, the existence of a nontrivial solution for g ≥ 12 does
not prove that the recurrence formula in Theorem 1 holds for all positive integers n. But this
follows from Zeilberger’s algorithm, which produces the same polynomials as the above Maple-
procedure. To compute the coefficients of the polynomials Qi in Theorem 1, the algorithm
works by setting

> f := t→ sum(k ∗ binomial(t, k)̂ 2 ∗ binomial(t+ k, k)̂ 3, k = 0..t) :

Put g = 14; there is no nontrivial solution for any smaller g.
By the result of the following theorem a much simpler linear equation is found involving

both sums, un,0 and un,1:
Theorem 2:

n3(216n+ 125)un−1,0 − (3471n4 + 6057n3 + 4278n2 + 1472n+ 207)un,0+
+ 23(n+ 1)4 un+1,0+

+ 5n2(76n+ 41)un−1,1 + (1161n3 + 1083n2 + 207n− 23)un,1 = 0 (4)

This five term recurrence does not follow automatically from Zeilberger’s algorithm. The
idea to find the coefficients of the polynomials is to modify the above Maple-procedure in the
following way:

> e := t→ sum(binomial(t, k)̂ 2 ∗ binomial(t+ k, k)̂ 3, k = 0..t) :
> f := t→ sum(k ∗ binomial(t, k)̂ 2 ∗ binomial(t+ k, k)̂ 3, k = 0..t) :
> r := (m, g)→ floor(abs((m− 1)/(2 ∗ (1 + g))− 1/2)) :
> g := 4 :
> p := 5 ∗ (1 + g) :
> h1 := (n,m)→ n+ floor((m− 1)/(1 + g)) :
> h2 := m→ −m mod(g + 1) :
> M := Matrix(p, p, (n,m)→ (n+ 4)̂ (h2(m)) ∗ ((1− r(m, g)) ∗ e(h1(n+ 3,m))

+ r(m, g) ∗ f(h1(n,m)))) :
> b := V ector[row](p, n→ 0) :
> x := linsolve(M, b);
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Proof of Theorem 2: For integers k, n with 0 ≤ k ≤ n, we put

λn,k =
(
n

k

)2(
n+ k

k

)3

,

where λn,k = 0 if k < 0 or k > n .

A0 = n3(216n+ 125) ,

A1 = 5n2(76n+ 41) ,

B0 = − (3471n4 + 6057n3 + 4278n2 + 1472n+ 207) ,

B1 = 1161n3 + 1083n2 + 207n− 23 ,

C0 = 23(n+ 1)4 ,

D1 = 4(144n3 + 252n2 + 138n+ 23) ,

D2 = 4(296n2 + 288n+ 69) ,

Ln,k = A0 +B0 + C0 +D1k +D2k
2 .

The proof of the theorem is based on the identity
(A0 +A1k)λn−1,k + (B0 +B1k)λn,k + C0λn+1,k

= Ln,kλn,k − Ln,k−1λn,k−1 (5)

for n ≥ 1 , 0 ≤ k ≤ n . Let 0 ≤ k ≤ n. We divide (5) by λn,k; note that

λn−1,k

λn,k
=
n(n− k)2

(n+ k)3
,

λn+1,k

λn,k
=

(n+ k + 1)3

(n+ 1)(n− k + 1)2
,

λn,k−1

λn,k
=

k5

(n− k + 1)2(n+ k)3
.

Putting these terms into (5), multiplying with (n+ 1)(n+ k)3(n− k + 1)2 and arranging the
terms with respect to the powers of k, we get

{(A0 +B0 + C0)n3(n+ 1)3}
+{−2A0n

2(n+ 1)(2n2 + 3n+ 1) +B0n
2(n+ 1)(n2 + 4n+ 3)

+3C0n
2(n+ 1)2(2n+ 1) + (A1 +B1)n3(n+ 1)3}k

+{A0n(n+ 1)(6n2 + 6n+ 1)−B0n(n+ 1)(2n2 − 3)

+3C0n(n+ 1)(5n2 + 5n+ 1)− 2A1n
2(n+ 1)(2n2 + 3n+ 1)

+B1n
2(n+ 1)(n2 + 4n+ 3)}k2

+{−2A0n(n+ 1)(2n+ 1)−B0(n+ 1)(2n2 + 4n− 1)

+C0(2n+ 1)(10n2 + 10n+ 1) +A1n(n+ 1)(6n2 + 6n+ 1)

−B1n(n+ 1)(2n2 − 3)}k3

+{A0n(n+ 1) +B0(n+ 1)(n− 2) + 3C0(5n2 + 5n+ 1)

−2A1n(n+ 1)(2n+ 1)−B1(n+ 1)(2n2 + 4n− 1)}k4

+{B0(n+ 1) + 3C0(2n+ 1) +A1n(n+ 1) +B1(n+ 1)(n− 2)}k5

+{C0 +B1(n+ 1)}k6
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= {(A0 +B0 + C0)n3(n+ 1)3}
+{D1n

3(n+ 1)3 + (A0 +B0 + C0)n2(n+ 1)(n2 + 4n+ 3)}k
+{D1n

2(n+ 1)(n2 + 4n+ 3) +D2n
3(n+ 1)3

−(A0 +B0 + C0)n(n+ 1)(2n2 − 3)}k2

+{−D1n(n+ 1)(2n2 − 3) +D2n
2(n+ 1)(n2 + 4n+ 3)

−(A0 +B0 + C0)(n+ 1)(2n2 + 4n− 1)}k3

+{−D1(n+ 1)(2n2 + 4n− 1)−D2n(n+ 1)(2n2 − 3)

+(A0 +B0 + C0)(n+ 1)(n− 2)}k4

+{D1(n+ 1)(n− 2)−D2(n+ 1)(2n2 + 4n− 1) + (A0 +B0 + C0)(n+ 1)}k5

+{D1(n+ 1) +D2(n+ 1)(n− 2)}k6

+{D2(n+ 1)}k7

−{−D1(n+ 1) +D2(n+ 1) + (A0 +B0 + C0)(n+ 1)}k5

−{D1(n+ 1)− 2D2(n+ 1)}k6

−{D2(n+ 1)}k7

(6)

(6) may be considered as a polynomial in k of degree 7. Therefore it suffices to treat the
polynomials in n belonging to the same power of k by straightforward computations. This
can be simplified if we put in for n sufficiently many of the numbers 0, 1, 2, . . . to check the
identities of the polynomials in n. — Hence (5) is proved. Finally, we sum up from k = 0 to
n in (5). We have

n∑
k=0

(Ln,kλn,k − Ln,k−1λn,k−1) = Ln,nλn,n

(by λn,−1 = 0) and
n∑
k=0

λn−1,k =
n−1∑
k=0

λn−1,k = µn−1,0

(by λn−1,n = 0).
So one gets(

A0 µn−1,0 +B0 µn,0 + C0 ·
n∑
k=0

λn+1,k

)
+A1 µn−1,1 +B1 µn,1 = Ln,n λn,n .

To finish the proof of the theorem it suffices to show that

−C0 λn+1,n+1 = Ln,n λn,n ,

which is equivalent with

8C0(2n+ 1)3 + (n+ 1)3
(
A0 +B0 + C0 +D1n+D2n

2
)

= 0 .
Here the identity

λn+1,n+1

λn,n
=
(

2 · (2n+ 1)
n+ 1

)3
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is used. The last but one identity can be verified by straightforward computations. The proof
of the theorem is complete.

It has been already mentioned in the introduction that

vn,0 :=
n∑
k=0

(
n

k

)3(
n+ k

k

)
satisfies a five-term recurrence formula with integer polynomials of degree 8. Moreover, the
same is true for the sum

vn,1 :=
n∑
k=0

k

(
n

k

)3(
n+ k

k

)
with integer polynomials of degree 10. Similarly to the result of Theorem 2, one can prove a
much simpler linear identity involving both sums, vn,0 and vn,1:
Theorem 3:

2n2(343n+ 135) vn−1,0 + (412n3 + 537n2 + 272n+ 51) vn,0−

− 17(n+ 1)3 vn+1,0+

+ 96n(8n+ 3) vn−1,1 − (162n2 + 99n+ 17) vn,1 = 0.

The arguments in proving that result are the same as in the proof of Theorem 2. The coefficients
of the polynomials can be found by a Maple-procedure adapted to vn,0 and vn,1.

2. EXPLICIT FORMULAE FOR THE LIMITS OF SOME
SERIES WITH BINOMIAL COEFFICIENTS

It is of great interest that Apery’s proof of the irrationality of ζ(3) leads to an infinite

series consisting of terms associated with
(
2n
n

)−1
, which converges rapidly to ζ(3) :

ζ(3) =
5
2

∞∑
n=1

(−1)n−1

n3
(
2n
n

) . (7)

A similar identity holds for ζ(2) :

ζ(2) =
π2

6
= 3

∞∑
n=1

1
n2
(
2n
n

) , ( [3] ). (8)

Furthermore, it is known that
∞∑
n=1

1(
2n
n

) =
2π
√

3 + 9
27

, (9)

and
∞∑
n=1

1
n
(
2n
n

) =
π
√

3
9

. (10)

(8), (9), and (10) can be obtained from

2 (arcsin z)2 =
∞∑
n=1

(2z)2n

n2
(
2n
n

)
38
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by computing the first and second derivative at the point z = 1
2 (see [15], [5]). The same

arguments yield (at the point z = i
2 ) :

∞∑
n=1

(−1)n+1

n2
(
2n
n

) = 2 log2

(√
5− 1
2

)
, (11)

∞∑
n=1

(−1)n+1

n
(
2n
n

) =
2
√

5
5

log

(√
5 + 1
2

)
, (12)

∞∑
n=1

(−1)n+1(
2n
n

) =
1
5

+
4
√

5
25

log

(√
5 + 1
2

)
. (13)

(13) can be found in [10]. It was conjectured by A. van der Poorten that

ζ(4)
(

=
π4

90

)
=

36
17

∞∑
n=1

1
n4
(
2n
n

) . (14)

Finally this conjecture was proved by A. van der Poorten himself [14], [15] and by H.
Cohen [4] . In the same paper [4] H. Cohen has generalized the ideas of R. Apery for ζ(2r+ 1)
and ζ(2r) (r ≥ 1), which leads (unfortunately) to no new irrationality proofs, but to some new
identities. For instance:

ζ(5) =
5
2

∞∑
n=1

(−1)n

n3
(
2n
n

) (n−1∑
k=1

1
k2
− 4

5n2

)
; (15)

for some related identities see [12].
In the following we state the limits of some related sums; all these identities can be proved

by using the real (or complex) Taylor expansion of a certain function, or by taking advantage
of the known value of a certain integral. For more results we refer the reader to the chapter
on numerical power series in [10].

∞∑
n=0

n

(2n+ 1)
(
2n
n

) =
2
3
− 2π

√
3

27
,

∞∑
n=0

(−1)n+1
n

(2n+ 1)
(
2n
n

) =
12
√

5
25

log

(
1 +
√

5
2

)
− 2

5
,

(16)

∞∑
n=0

1
(2n+ 1)2

(
2n
n

) =
π

2
log 3 − 4 ·

∫ 1

0

arcsinw
4− w2

dw , (17)

∞∑
n=0

2n

(2n+ 1)
(
2n
n

) =
π

2
, (18)

∞∑
n=0

(−1)n · 4n

(2n+ 1)
(
2n
n

) =
√

2
4

log

(√
2 + 1√
2− 1

)
. (19)
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These identities are proved by the integral∫ π
2

0

(
cos t

2

)2m+1

dt =
1

2(2m+ 1)
(
2m
m

) (m ≥ 0) ,

(see [9,vol.2,331-30]), and by [9,vol.1,231-10b].

∞∑
n=0

(
2n
n

)
(n+ 1)(2n+ 1) 4n

= π − 2 , (20)

∞∑
n=0

(
2n
n

)
(2n+ 1) 4n

=
π

2
, (21)

∞∑
n=0

(
2n
n

)
(2n+ 1)2 4n

=
π

2
log 2 , (22)

∞∑
n=0

(−1)n ·
(
2n
n

)
(2n+ 1) 4n

= log(1 +
√

2) . (23)

Here we have applied the series

arcsin z =
∞∑
n=0

(
2n
n

)
(2n+ 1) 4n

· z2n+1 (|z| < 1) ,

and Abel’s limit theorem. For the proof of (22) one may use the tables in [9,vol.2,341-6a].

∞∑
n=2

1
(n− 1)

(
2n
n

) =
1
2
− π
√

3
18

, (24)

∞∑
n=2

1
n(n− 1)

(
2n
n

) = 1− π
√

3
6

. (25)

For a proof of (25) it is useful to apply the Taylor expansion of the function (arcsinx)2. The
identity then follows by computing the limit on the right side of the identity

∞∑
n=2

1
n(n− 1)

(
2n
n

) = lim
ε→0

∫ 1
2

ε

(
arcsin t
t2
√

1− t2
− 1
t

)
dt

= lim
ε→0

[−(arcsin t) · (cot arcsin t) ]t=
1
2

t=ε .
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The identity in (24) follows easily applying (10), (25), and 1
n(n−1) = 1

n−1 −
1
n .

The series S1 and S2 from the following theorem involving binomial coefficients
(
2n
n

)
depend on a parameter k. They satisfy a homogeneous three-term recurrence formula each.
Applications of the identities (i) and (iii) are given in Theorems 5,6 below and they provide
a connection between the numbers

√
3π and

√
5 log ρ with ρ := (1 +

√
5)/2.

Theorem 4: For every integer k ≥ 0 we have

(i) S1(k) =
∞∑
n=0

1
(2n+ 1)(2n+ 3) · . . . · (2n+ 2k + 1)

(
2n
n

) = . . .

=
4

1 · 3 · 5 · . . . · (2k − 1)

(
(−1)k

π

2
3k−

3
2 +

k−1∑
ν=0

(−3)ν

2k − 2ν − 1

)

(ii) (2k + 3)2 · S1(k + 2) + 4(k + 2) · S1(k + 1)− 3 · S1(k) = 0

(iii) S2(k) =
∞∑
n=0

(−1)n

(2n+ 1)(2n+ 3) · . . . · (2n+ 2k + 1)
(
2n
n

) = . . .

=
4

1 · 3 · 5 · . . . · (2k − 1)

(
5k−

1
2 log

(
1 +
√

5
2

)
−

k−1∑
ν=0

5ν

2k − 2ν − 1

)

(iv) (2k + 3)2 · S2(k + 2)− 4(3k + 4) · S2(k + 1) + 5 · S2(k) = 0 .

For instance, we get for k = 1, 2, 3:

S1(1) = 4− 2π
√

3
3

, S1(2) =
2π
√

3
3
− 32

9
, S1(3) =

164
75
− 2π

√
3

5
;

S2(1) = 4
√

5 log
(1 +

√
5

2
)
− 4 , S2(2) =

20
√

5
3

log
(1 +

√
5

2
)
− 64

9

S2(3) =
20
√

5
3

log
(1 +

√
5

2
)
− 1612

225
.

In the case when k equals to zero we define as usual
∑−1
ν=0(. . . ) to be 0, and 1 · 3 · . . . · (2k− 1)

to be 1 :
∞∑
n=0

1
(2n+ 1)

(
2n
n

) =
2π
√

3
9

, (26)

∞∑
n=0

(−1)n

(2n+ 1)
(
2n
n

) =
4
√

5
5

log

(
1 +
√

5
2

)
. (27)
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Proof: The linear three-term recurrences for S1(k) and S2(k) from this theorem are
homogeneous ones. We apply Zeilberger’s algorithm to both sums. Then one gets two inho-
mogeneous first order recurrences:

3S1(k) + (2k+ 1)S1(k+ 1) = 4 · 2kk!
(2k + 1)!

, 5S2(k)− (2k+ 1)S2(k+ 1) = 4 · 2kk!
(2k + 1)!

. (28)

It can easily be seen that the terms on the right sides in (i) and (iii) satisfy the corresponding
recurrence in (28). We demonstrate this for S1(k). For the sake of brevity let

ak :=
k−1∑
ν=0

(−3)ν

2k − 2ν − 1
(k ≥ 1) .

One easily verifies that

ak+1 = −3ak +
1

2k + 1
.

We denote the term on the right side in (i) by S∗1 (k). Then we have

2k + 1
3
· S∗1 (k + 1) =

=
4

1 · 3 · 5 · . . . · (2k − 1)
·
(
−(−1)k · π

2
· 3k− 3

2 − ak +
1

3(2k + 1)

)
,

or

2k + 1
3
· S∗1 (k + 1) + S∗1 (k) =

4
3 · (1 · 3 · 5 · . . . · (2k + 1))

, (29)

which gives the left recurrence formula in (28). To prove the identity in (i) it suffices to show
that it holds for k = 0, since both sides in (i) satisfy the same linear first order recurrence
formula. So it remains to prove (26). For this purpose we apply the results from (9) and (16).
By

1
2
− n

2n+ 1
=

1
2(2n+ 1)

(n ≥ 0)

we get

S1(0)
2

=
∞∑
n=0

1
2(2n+ 1)

(
2n
n

) =
1
2

∞∑
n=0

1(
2n
n

) − ∞∑
n=0

n

(2n+ 1)
(
2n
n

)

=

(
2
3

+
π
√

3
27

)
−

(
2
3
− 2π

√
3

27

)
=
π
√

3
9

,

which gives (26). By similar arguments one shows that the identity in (iii) holds by using (13)
and (16).
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It can easily be seen that the three-term recurrence in (ii) follows from the first order
recurrence in (29). Writing down this equation a second time with k replaced by k + 1 and
then multiplying by (2k + 3), one gets an identity having the same right side as above. So
a linear equation with respect to S∗1 (k), S∗1 (k + 1), and S∗1 (k + 2) results which proves the
identity from (ii) by S∗1 (k) = S1(k). The recurrence in (iv) can be proved analogously. This
finishes the proof of the theorem.

The identities in (i) and (iii) also follow from the integral

∫ π
2

0

sin2kt · cos2n+1t dt =
2n · n!

(2k + 1)(2k + 3) · . . . · (2k + 2n+ 1)

=
22n · z(k)

(2n+ 1)(2n+ 3) · . . . · (2n+ 2k + 1)
(
2n
n

) ,
where z(k) := 1 · 3 · 5 · 7 · . . . · (2k − 1) (k ≥ 1), z(0) := 1 (see [9,vol.2,331-21c]). We leave the
details to the reader.

Finally we show by the preceding results that the ordinary hypergeometric series provides
the announced close connection between the numbers

√
3π and

√
5 log ρ with ρ := (1 +

√
5)/2.

Putting

cm :=
(−1)m ·m!

4m
(m ≥ 1) ,

one easily checkes by straightforward calculations that

S2(n− 1) =
2n−1 · (n− 1)!

(2n− 1)!
·
∞∑
m=0

cm

(n+ 1
2 )
m

(30)

=
2n−1 · (n− 1)!

(2n− 1)!
· F
(

1, 1;n+
1
2

;−1
4

)
holds for all integers n ≥ 1. Here,

F (a, b; c;x) = 2F1

(
a b
c

|x
)

denotes the ordinary hypergeometric function. A similar identity can be found for S1. So we
have proved the following result.
Theorem 5: For every positive integer n there are rationals q, r, s, t such that

F

(
1, 1;n+

1
2

;
1
4

)
= q
√

3π + r

and

F

(
1, 1;n+

1
2

;−1
4

)
= s
√

5ρ+ t
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hold.
But two more general identities can be proved. Let

sn =
(

1 +
1
2

+ · · ·+ 1
n− 1

)
− log n (n ≥ 2) .

One has
sn = γ +O(n−1) (n ≥ 2) ,

where γ denotes Euler’s constant. In [6] the author has shown that
n∑
k=0

(−1)n+k

(
n+ k + τ − 1

n

)(
n

k

)
· sk+τ = γ +O

(
(τ − 1)!
(n)τ+1

)
holds for all integers n ≥ 1 and τ ≥ 2. The specific linear form in sτ , . . . , sn+τ with integer
coefficients converges more rapidly to γ than the basic series sn. The underlying idea of that
series transformation goes back to an identity proved by J. Ser in 1925 [17]. The form of Ser’s
result the author has used in [6] is the following one:

sn+τ = γ −
∞∑
m=1

cm
(n+ τ)m

(n ≥ 0)

with explicitly given rationals cm. As can be seen by (30), a similar series transformation can
be applied to S2 (and to S1, of course). Finally, one gets:
Theorem 6: Let n and m denote positive integers satisfying m ≥ 2n. Then there are rationals
q, r, s, t such that

F

(
n, n+ 1;m+

1
2

;
1
4

)
= q
√

3π + r

and

F

(
n, n+ 1;m+

1
2

;−1
4

)
= s
√

5ρ+ t

hold.
For instance, we have for n = 5 and m = 10:

F

(
5, 6;

21
2

;
1
4

)
= 4676174360

√
3π − 178114483690

7
,

F

(
5, 6;

21
2

;−1
4

)
= −55464490224

√
5 log ρ+

417767218726
7

.
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Théorie des Nombres, 5 Octobre 1978, Grenoble.

44



ON RECURRENCE FORMULAE FOR SUMS INVOLVING BINOMIAL COEFFICIENTS
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