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ABSTRACT

We study properties of arithmetic progressions consisting of three squares; in particular,
how one arithmetic progression generates infinitely many others, by means of explicit formulas
as well as a matrix method. This suggests an equivalence relation could be defined on the
arithmetic progressions, which lead to interesting problems for further study.

The purpose of this paper is to investigate ordered triples of integers whose squares form
an arithmetic progression. In other words, we want to study (a, b, c), where a, b, c are integers
that satisfy b2 − a2 = c2 − b2, or equivalently,

2b2 = a2 + c2. (1)

We call such an ordered triple an arithmetic progression triple, or simply an apt.
Theorem 1: The ordered triple (a, b, c) is an apt if and only if it satisfies equation (1).

Obviously, we have an apt if its entries have the same absolute value. Consequently, for
n 6= ±1, we call the ordered triple (±n,±n,±n), for any combination of signs, the trivial apts.
Examples of nontrivial apts include (1,−1,−1), (1, 5, 7), and (−7, 13, 17).

Solving equation (1) is a rather standard exercise. A proof of the next result can be found
in, for example, [6, pages 305 and 343]. It can also be derived from a more general result
regarding solutions of ax2 + bxy + cy2 = ez2; see, for example, [2, Theorem 42].
Theorem 2: Let ρ be the greatest common divisor of a, b, c, then the solutions of the Dio-
phantine equation 2b2 = a2 + c2 are of the form

a = ±ρ(m2 − n2 − 2mn),
b = ±ρ(m2 + n2),
c = ±ρ(m2 − n2 + 2mn), (2)

for any integers m and n.
In light of Theorem 2, we call the apt (a, b, c) a primitive arithmetic progression triple, or

simply a papt, if ρ = 1. Observe that
• If (a, b, c) is a papt, then so is (c, b, a).
• If (a, b, c) is a papt, then so are (±a,±b,±c) for any combination of signs.
• Consequently, with the exception of (±1,±1,±1), finding one papt would immediately lead

to fifteen other papts, which vary only in signs and order. The ordered triple (±1,±1,±1),
however, leads to only seven other papts.
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The next two theorems are also easy to prove.
Theorem 3: If (a, b, c) is a papt, then a, b and c are all odd.

Proof: Since 2b2 = a2 + c2 is even, we conclude that a2 and c2, hence a and c, have the
same parity. If a and c are both even, then 2b2 = a2+c2 ≡ 0 (mod 4) implies that b is also even,
in which case (a, b, c) cannot be a papt. Thus both a and c are odd. Now 2b2 = a2 + c2 ≡ 2
(mod 4) requires that b be odd as well.
Theorem 4: The ordered triple (a, b, c) is a papt if and only if m 6≡ n (mod 2) and
gcd(m,n) = 1.

Proof: Let (a, b, c) be a papt. It is obvious that we need gcd(m,n) = 1. On the other
hand, Theorem 3 asserts that

1 ≡ m2 − n2 − 2mn ≡ m2 + n2 ≡ m2 − n2 + 2mn (mod 2),

hence m 6≡ n (mod 2).
Conversely, assume m and n have opposite parity and are relatively prime. Let d =

gcd(m2 − n2 − 2mn,m2 + n2). Suppose d > 1, then it has a prime factor p. Since m and n
have opposite parity, p must be odd. We also know p divides the linear combination

(m2 − n2 − 2mn) + (m2 + n2) = 2m2 − 2mn = 2m(m− n).

If p divides m, then, since p divides m2 +n2 as well, we also have p divides n, which contradicts
the assumption that m and n are relatively prime. Hence p must divide m− n. On the other
hand, the same argument applies to the linear combination

(m2 + n2)− (m2 − n2 − 2mn) = 2n2 + 2mn = 2n(m+ n)

leads to p divides m+n. Consequently, p divides both (m+n) + (m−n) = 2m and (m+n)−
(m − n) = 2n, which in turn implies that p divides both m and n. This contradiction shows
that d = 1. In a similar fashion, gcd(a, c) = gcd(b, c) = 1. Thus (a, b, c) is a papt.

Are there any nontrivial arithmetic progression with square entries that could exceed three
in length? The answer is negative.
Theorem 5: The only four positive integers whose squares can form an arithmetic progression
are those with the same absolute value. In other words, (±n,±n,±n,±n) are the only ordered
quadruples whose squares form an arithmetic progression.

Proof: Suppose a2, b2, c2, d2 are relatively prime squares that form an arithmetic progres-
sion. Then b2 − a2 = c2 − b2 = d2 − c2, or equivalently,

(b− a)(b+ a) = (c− b)(c+ b) = (d− c)(d+ c).

We know that a, b, c and d are odd, thus both b−a and c−b are even. Let 2α = gcd(b−a, c−b)
so that we can write

b− a = 2αβ, c− b = 2αγ, (3)

where gcd(β, γ) = 1. Likewise letting 2δ = gcd(b+ a, c+ b) would lead to

b+ a = 2γδ, c+ b = 2βδ, (4)
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which in turn imply that
d− c = 2αδ, d+ c = 2βγ. (5)

¿From (3) and (4), we find 2b = 2αβ + 2γδ = 2βδ − 2αγ. Hence we obtain

γ(δ + α) = β(δ − α). (6)

Likewise, 2c = 2αγ + 2βδ = 2βγ − 2αδ implies that

δ(β + α) = γ(β − α). (7)

Since gcd(δ ± α, β ± α) equals 1 or 2, a comparison of (6) and (7) would yield either

(I) δ + α = β

δ − α = γ
or

(II) δ + α = 2β
δ − α = 2γ

In a similar manner, we have either

(III) β + α = γ

β − α = δ
or

(IV) β + α = 2γ
β − α = 2δ

Substituting (I) into (7) yields
β + α = γ.

Hence (I) implies (III), and similarly, (III) implies (I); and in such event we would have

2δ = β + γ and δ + β = 2γ.

Together they imply 2δ−γ = β = 2γ−δ; thus δ = γ, from which we deduce that α = 0, which
is impossible. Hence we must have (II) and (IV). It then follows that

δ + α = 2β = 2γ + 2δ = (δ − α) + 2δ,

which leads to α = δ, from which we find γ = 0, which is again impossible. Thus a2, b2, c2

and d2 cannot form an arithmetic progression without having gcd(a, b, c, d) > 1.
With Theorem 5, we can focus our attention to papts. Given a papt, we can easily generate

other papts.
Lemma 6: If (a, b, c) is a papt, then so are (c, 3(±b)− 2(±a), 4(±b)− 3(±a)).

Proof: Direct computation yields

[4(±b)− 3(±a)]2 − [3(±b)− 2(±a)]2 = 7b2 − 12(±b)(±a) + 5a2

and

[3(±b)− 2(±a)]2 − c2 = [3(±b)− 2(±a)]2 − (2b2 − a2) = 7b2 − 12(±b)(±a) + 5a2,

which completes the proof.
Corollary 7: If (a, b, c) is a papt, then so are (4(±b)− 3(±c), 3(±b)− 2(±c), a).
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Proof: Since (a, b, c) is a papt, so is (c, b, a). Lemma 6 states that (a, 3(±b) −
2(±c), 4(±b)− 3(±c)) are also papts, hence so are (4(±b)− 3(±c), 3(±b)− 2(±c), a).
Lemma 8: If (a, b, c) is a papt, then for n = 0,±1,±2, . . . , the ordered triples (An, Bn, Cn),
where

An = 2n(n− 1)b− (n2 − 1)a− n(n− 2)c, (8)
Bn = (2n2 + 1)b− n(n+ 1)a− n(n− 1)c, (9)
Cn = 2n(n+ 1)b− n(n+ 2)a− (n2 − 1)c. (10)

are also papts.
Proof: Let A0 = a, B0 = b, C0 = c, and define recursively, for n > 0,

An = Cn−1, Bn = 3Bn−1 − 2An−1, Cn = 4Bn−1 − 3An−1.

It follows from Lemma 6 that (An, Bn, Cn) is a papt for each n > 0. For instance,

A1 =
A2 = 4b− 3a,
A3 = 12b− 8a− 3c,
A4 = 24b− 15a− 8c,

B1 = 3b− 2a,
B2 = 9b− 6a− 2c,
B3 = 19b− 12a− 6c,
B4 = 33b− 20a− 12c,

C1 = 4b− 3a,
C2 = 12b− 8a− 3c,
C3 = 24b− 15a− 8c,
C4 = 40b− 24a− 15c.

Newton’s forward difference formula (see, for example, [3]) suggests that for all n ≥ 0, (8)–(10)
would give the formulas for An, Bn and Cn. These formulas can be easily verified by induction.
For negative subscripts, define recursively, for n > 0,

A−n = 4B−(n−1) − 3C−(n−1), B−n = 3B−(n−1) − 2C−(n−1), C−n = A−(n−1).

Corollary 7 ensures that (A−n, B−n, C−n) is a papt for each integer n > 0, and it follows by
induction that formulas (8)–(10) still work perfectly.

We also discover another interesting property of the numbers An, Bn, Cn.
Corollary 9: The determinant

D =

∣∣∣∣∣∣
An An+1 An+2

Bn Bn+1 Bn+2

Cn Cn+1 Cn+2

∣∣∣∣∣∣ = 2(2b− a− c)3.

is independent of n. Therefore, D is an invariant, and its value depends only on a, b and c.
Proof: The result follows from equations (8)–(10), the details are left to the readers.
Let us look at a few examples. First, observe that the papt (1, 1, 1) is not particularly

interesting, in the sense that it generates (An, Bn, Cn) = (1, 1, 1) for each n. The following
papts are derived from the papt (1, 5, 7) with the aid of Lemma 8.

n . . . −4 −3 −2 −1 0 1 2 3 4 . . .

An . . . 17 7 1 −1 1 7 17 31 49 . . .
Bn . . . 13 5 1 1 5 13 25 41 61 . . .
Cn . . . 7 1 −1 1 7 17 31 49 71 . . .
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It should be clear that any papt derived from (1, 5, 7) will generate the same list of papts; what
it amounts to is a shifting of the table listed above. Here is the reason. Note that equations
(8)–(10) can be combined into a matrix equation:An

Bn

Cn

 =

 −(n2 − 1) 2n(n− 1) −n(n− 2)
−n(n+ 1) 2n2 + 1 −n(n− 1)
−n(n+ 2) 2n(n+ 1) −(n2 − 1)

 ab
c

 . (11)

Comparing to Lemma 6, we conclude that −(n2 − 1) 2n(n− 1) −n(n− 2)
−n(n+ 1) 2n2 + 1 −n(n− 1)
−n(n+ 2) 2n(n+ 1) −(n2 − 1)

 =

 0 0 1
−2 3 0
−3 4 0

n

.

In particular, when n = 1,−1, we obtain Lemma 6 and Corollary 7 respectively. The matrix
equation in (11) leads to Ah

Bh

Ch

 =

 0 0 1
−2 3 0
−3 4 0

h−k Ak

Bk

Ck

 .
Hence, given any papt (x, y, z), and any integer n, we can always find (a, b, c) such that (x, y, z)
is precisely the nth papt (An, Bn, Cn) that can be derived from (a, b, c).

In light of what we have learned thus far, we define two papts (a, b, c) and (a′, b′, c′) to be
related, and write (a, b, c) ∼ (a′, b′, c′), if one can be derived from the other; that is, if there
exists an integer n such that (a′, b′, c′) = (An, Bn, Cn) that can be derived from (a, b, c).

It is clear that ∼ is an equivalence relation. For example, the equivalence class represented
by (1, 1, 1) contains only one papt, namely, (1, 1, 1) itself. The example we discussed above
is the equivalent class represented by (1, 5, 7). An immediate question is whether there exists
any other equivalent classes.

Suppose (a, y, z) is a papt, then by Theorem 2,

a = m2 − n2 − 2mn

for some integers m and n. This yields m = n±
√

2n2 + a. Given a, choose n so that 2n2 +a is
a perfect square. This gives us m and in turn y and z. For example, if a = 1 and n = 2, them
m = 5 or −1, and we obtain the papts (1, 29, 41) and (1, 5,−7) respectively. The following
result is well-known, see, for example, [1].
Theorem 10: If 2n2 + a is a perfect square for some value of n, then it is so for infinitely
many values of n.

Consequently, there exist infinitely many equivalence classes. It would be an interesting
problem to classify them according to the value of a, for which there exists an n such that
2n2 + a is a perfect square. Note that if the integer a cannot be expressed in the form of
p2 − 2q2 for some integers p and q, then 2n2 + a can never be a perfect square for any integer
n. For example,

√
2n2 + 3 is always irrational if n is an integer.

For instance, one may want to count, for any papt (a, b, c), the number of equivalence
classes that (±a,±b,±c) would produce. Computational evidence suggests that the answer
may depend on n and m.
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