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1. INTRODUCTION

There are essentially seven different non—trivial systems of three intertwined second—order
recurrence relations, as shown in [2], pp. 30-37, but the solutions are not given there. The
object of this note is to give explicit solutions to all seven systems.

It appears that this area of study was initiated by K. Atanassov [1], with further contri-
butions by K. Atanassov, J. Hlebarova and S. Mihov [3], and W. Spickerman, R. Creech and
R. Joyner [4], [5]. In the last of these, solutions are in terms of recurrent sequences of order
6. Our solutions are in terms of Fibonacci numbers and various recurrences of orders 3 and 4
that grow more slowly than the Fibonacci numbers.

The seven systems and their solutions are given in §2.

We introduce the following six recurrent sequences. Explicit formulas are given in §3 for
all these sequences.

The derivations of all our results are given in §4.

Let G, Hy, J,, K,, L, and M, be defined by
Go=1 G =2, Go=2, G3=1
and for n > 0,

Gn+4 = 2Gn+3 - 2Gn+2 + Gn+1 - Gn7

Hy=1, H = —1, Hy =2, Hy = —2
and for n > 0,
Hn+4 = _Hn+3 + Hn—I—Q + H’n—i—l - Hna

J():l, J1:—1, JQZ—]_, J3:1
and for n > 0,

Jn+4 = —Jdn4+3 — 2Jn+2 - 2Jn—i—l - Jn7

Ko=1, K, = -1, Ky =1
and for n > 0,

Kn+3 = —Np4y2 — Kn:
Lo=1, L1 =0, Ly =-—1
and for n > 0,

Ln—|—3 = _Ln—i—l + L,
and

M()Zl, M1:O, MQIO, MgZO
and for n > 0,
M, = —M, 4.
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2. THE SYSTEMS AND THEIR SOLUTIONS

The seven non-trivial systems of intertwined second-order recurrences, together with their
solutions, are as follows. Note that in each case we have multiplied through by 3 so as to clear
fractions.

An42 = Ap41 + bn: (1)
bn+2 = bn+1 + ¢y,

Cn+2 = Cpt1 + Gn.

( w1 +2G,, —4G,,_1 +3G,,_2 — Gn_g) ag + (Fn +2Gh-1 — 2G, 2 + Gn_g) a1
(Fn 1 — Gn + 2Gn—1 - Gn—?)) bO + (Fn - Gn—l + Gn—2 + Gn—3) bl

(Fn 1 — Gn + 2G'n71 - 3Gn72 + 2Gn73) (&) + (Fn - anl + Gn72 - 2Gn73) C1,
(

(

+ o+

(Froe1 — G +2Gp—1 —3G,—2+2Gp_3) a0+ (F, — Gp—1 + Gr—o — 2Gp—3) aq
Fo1+4+2G,—4G,-1+3Gp_—2—Gp_3)bog+ (F, +2G,-1 — 2Gp—2+ Gp—3) by
Foo1—Gn+2G-1—Gr3)co+ (Fr, — Gp_1 +Gp_2+ Gp_3) c1,
=(F1—Gn+2G1 —Gp_3)ag+ (Fr, — Gpo1 + Gro+ Gp_3) a1

+ (Fho1 —Gp+2Gp-1 —3Gp—2+2G,_3) by + (F,, — Gpo1 + G2 — 2G,—3) by
+ (Fpoo1 +2G, —4Gp—1 +3Gp—2 — Gp_3)co + (B + 2Gp—1 — 2G o + Gp_3) 1.

+ +

Ap+2 = bn+1 + Qp,, (2)
bn—|—2 = Cp+1 + bn»

Cn+2 = Ap41 + Cp.

= (F,_1+2H, +2H, y —H, 3)ao+ (F, +2H, 1+ H, 5 —2H,_3)a
+(Fhn-1—H,—Hp,1+2H,_3)by+ (F, — Hyp—1+ Hy—o+ H,_3) by
+(Fy1—H,—H, 1—Hy_3)co+ (F,— Hp—1 —2H,,_2+ H,,_3) c1,
3b, = (Fp-1—H,—H,-1—H,_3)ag+ (F, —H,—1 —2H, o+ H,_3) a1

+ (Fh-1+2H,+2H, 1 — Hy,_3)by+ (F, + 2H,,—1 + Hyp—2 — 2H,,_3) by
+(Fp-1—H,—H,1+2H,_3)co+ (F, — Hp—1 + Hp—2+ H,,—3) c1,
3¢n=Fp1—Hy,—Hy,1+2H, 3)ag+ (F, —Hy,—1+H,—2o+ Hy,_3)aq
+(Fyp1—Hy—Hp_ 1 — Hp_3)bg+ (Fy, — Hy_q —2H,,_o + H,,_3) by

+(Fh-1+2H,+2H, 1 —H,_3)co+ (F, +2H,,—1 + Hp—o —2H,,_3) 1

An+2 = bn+1 + bna (3)
bn+2 = Cp+1 + Cn,

Cn+2 = Ap41 1 Gn.
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= (Fpo1+2J, +2Jp1+3Jh—2+2Jn-3)ao+ (Fy +2Jp—1 + Jno + Jn_3) a1
(Fpo — Jp—1+ Jn—2+ Jn_3)bo + (Frn1 — Jp — Jne1 — Jn—3) b1
(Frnc1 — Jp — Jne1 —3Jpn—2 — Jp—3)co + (Fn — Jn—1 — 2Jp—2 — 2Jp,—3) c1,
bp=Fn-1—Jn—Jn-1—3Jn—o—Jn_3)ao+ (Fr, — Jn—1 — 2Jp—2 — 2J_3) 1
(
(

+ +

Fo1+2J,+2J1+3Jp—20+2Jp-3)bo+ (Fr +2Jp—1+ Jpn—2+ Jn_3) b1
F,—Jo_1+ Jp_—o+ Jn,3) Cco + (Fn,1 —Jp — Jn_1 — Jnfg) c1,

= (Fp—Jn-1+Jn—2+ JIn—3)ag+ (Fn1— Jpn — Jpn—1 — Jn_3) a1

+ (Foo1 — Jn—Jn-1 —3Jn—o — Jn—3)bo + (Fyy — Jp—1 — 2Jpy—0 — 2Jp,_3) b1

+ (Fp1 +2J +2J0 1 +3Jn0+2J0_3)co+ (Fn +2Jp1 + Juo + Ju_3)c1.

+ o+

Anp4+2 = bn+1 + ¢, (4)
bn+2 = Cp+1 + ap,

Cpnt2 = Gpt1 + by

2 2
1+ 2cos %) F,_1co+ (1 + 2 cos

Ap42 = Apy1 + bnv (5)
bn+2 = Cp+1 + an,

Cpnt2 = bn+1 + Cn.

318



NON-TRIVIAL INTERTWINED SECOND-ORDER RECURRENCE RELATIONS

Fo1 — 2K, — 3Kn_1 + 1) b + (F — Kyt — 2Kn_2) b1
-1+ Kn1+Kpo2—1co+ (F+Ky,+ Kpo1—1)cq,
Fo1—K,—K, 142K, 9)ay+ (F, — K,_1 —2K,,_2) a;
Fo1+2K, +2K, 1 — K,,_3)bo + (F, + 2K,,_1 + K;,_2) by
Fo1—Ky—Ky 11— Ky 2)co+ (Fr — K1+ Kp_2)c,
(Foo1 — Ky — Kpo1 — Kp9)ag+ (F, + K+ K1 — 1) aq
+ (Foor + Kpa + Ko = 1)bg + (F, — K1 + Ky _2) by
+(Fp1+ K+ 1)co+ (F,— Ky, —Kno+1)c.

+ +

( n— 1+2K +2Kn 1_an2)a0+(Fn_Kn+2Kn72+]-)a1
(

(
(F
(
(

+ +

An+42 = Ap41 + bn> (6)
bn—|—2 = Cn+1 + ¢y,

Cn42 = bn+1 + an.

= (Fpo1 +2M, — Mo — My _3) ap + (F, + 2My,—1 +2My, o + My, _3) ay
(Fre1 — My +2My o+ 2M,y,_3) by + (Fry — Myp—1 — Mo + My,_3) by

(Fn 1= Mn - Mn72 - M'nfS) co + (Fn - Mnfl - Mn72 - 2Mn73) C1,
(
(

+ +

(Fooor — My, — My +2My_3) ag + (Fyy — My—1 — My—5 — 2My_3) a1
Fo_1+4+2M, —M,_o—M,_3)by+ (F, +2M,—1 — My_2+ M, _3) b
Fry — My +2My_y — My_3)co + (Fp — My_1 + 2Mp_ + My_3) c1,
3cn = (Fno1 — My +2M,, o — My, _3)ag + (Fp, — Myp—1 — My —o + My,_3) aq

4 (Foet — My — Myy—g — Myy—3)bo + (Fy — My—1 + 2My_o — 2Myy_3) by
4 (Fouor 4 2Myy — My 4+ 2My—3) o+ (Fy + 2Mp—1 — My—o + Mp_3) c1.

+ +

An42 = bn+1 + an, (7)
bn+2 = Cp+1 + Cny
Cn+t2 = Qp41 + bp.

3a, = (Fp-1+Ln+Lyp1+2Lp o+ (—1)")ag+ (Fn+Lp+ Lp—1+Lypo—(—1)")ay
+ (Fh—1 — Lp — 2Ly _—2)bo + (Fp, — Ly, + (=1)") by
+(Fpo1— L1 — (=1)")eco+ (Fy, — Lpy—1 — Ly_2) ¢,
3b, = (Fu—1— Ly, —2L,2)ao+ (F, — Ly—1 — Lpp—2) a1
+ (Fn—1+2Lp 4+ Ly—2) bo + (Fyy +2Ly—1 — Lyp_2) by
+(Fn—1 — Lp+ Lp—2)co+ (F, — Lpy—1+2L,_2) c1,
3¢n=(Fn—1—Lp—1—(-1)")ao+ (F, — L, + (—-1)") ay
+(Fp1—Lp+ Lp2)bo+ (Fy+ Ly —2Lp 1+ L2 — (=1)") by
+(Fp1+Ly+Lp1—Lyp o+ (—1)")co+ (Fr+2Lp—1 — Lp_2)ci.
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3. THE EXPLICIT FORMULAS

We give explicit formulas for the various recurrences we have introduced in terms of certain
numbers that we are about to define.

Let
Rz(\/\/1_3+5+\/\/1_3—3>/\/§,r:(\/\/1_3+5—\/\/ﬁ—3)/\/§,
9 — COS_l — 3+—\/ﬁ , ¢ — COS_1 M ,
\/ 8 8
1 /294837  3/29 — /837
S_§+¢ 54 +¢ 54
ozl s (k)
o = cos 2575 8 = cos 25V5) "
Then

39H,, = 10R" > cos(n + 3)0 — 14R™ "% cos(n + 2)0 — 18R" ™! cos(n + 1)8 + 28 R" cos nf
+10r" ™3 cos(n + 3)¢ — 14r™ 2 cos(n + 2)¢ — 187" cos(n + 1)¢ + 28r™ cos n,
Gsn = Hanto — Han, Gant1 = Hang2, Gsnyo = Hzn — Hspia,

Jan = Hapq1 + Hspyo, Jant1 = —Hsp, J3pio = Hzp — Hapgo,

31K, = (65% — 25 4+ 9)(—S5)" +2 (% cos(n + 2)a + 2 cos(n + 1)a + 9 cos na) /\/gn,

VS

31L, = 2(—2S cos(n +2)3 — 3V'S cos(n + 1) + 9cosnﬁ)\/§n + (—% - % + 9) /S"

and
3nm

nm
2M,, = — —_
cos 1 + cos 1

4. THE DERIVATIONS
We start with system (1),

Anp4+2 = Ap+41 + bn7
bn+2 = bn+1 + cn,

Cpn+2 = Cnt1 + Gy
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Let A(t) = Y a0 @nt™, B(t) = X a0 bat™, C(t) = 3,50 ¢at™. Then

A(t) = tA(t) + t*B(t) + ag + (a1 — ap)t,

B(t) = tB(t) + t*C(t) + by + (b1 — bo)t,
C(t) =tC(t) + t2A(t) + co + (c1 — co)t.

That is,
1—t —t2 0 A(t) aop + (a1 — ag)t
0 1-t -t B(t) | = | bo+ (b1 —bo)t
—t2 0 1-t C(t) co+ (c1 —co)t
It follows that
A(t) 1 (1-1t)?2 21—t t ao + (a1 — ag)t
B(t) | = SRR tt (1=8)2 21 —1t) | | bo+ (b1 — bo)t

In particular,
A(t) =

ao(1 =3t +3t2 —13) + ay (t — 262 +3) + bo(t? — 263 + 1) + b1 (83 — 1) + co(t* — t5) + 1 t°
(1—t—t2)(1 —2t+2t2 — 3 — t4) '

Partial fractions then gives

11 2 4 2 143
A(t) = ay 3 3t 3 3t+t St
1—t—t2 1 —2t+2t2 -3+ t4
1 2 242 1.3
ra st N st — StP + 5t
1—t—t2  1—2t4+2t2—t3 4+ t4
1 1 1 2 1,43
s 3~ 3t —3t3t—3t
1—t—1t2  1—2t4+2t2 -3 +t4
1 1 142 1,3
s 3t N —3t+ 3t° + 5t
1—t—1t2  1—2t4+2t2 — 3+ t4
1 1 1 2 2 243
e 3 — 3t N —3Fst—t*+ 2t
1—t—12 1 —2t+2t2 —t3 44
1 1 142 243
e 3t N —gt+5t° — 5t
1—t—12  1—2t4+2t2 -3 +t4
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If we now define the G,, by

1
Gut™ =
2 1— 26422 — 3 4 ¢4

it follows that

3an = (Fn—l + QGn — 4Gn_1 + 3Gn_2 — Gn_3) ao + (Fn + QGn_l — QGn_Q + Gn_3> aj
+ (anl - Gn + Qanl - an?)) bO + (Fn - anl + an2 + an?)) bl
+ (Fn—l - Gn + 2Gn—1 - 3Gn—2 + 2Gn—3) co + (Fn - Gn—l + Gn—2 - 2Gn—3) C1,

as stated. The formulas for b, and ¢, in system (1) can be found in similar fashion.
In the case of system (2), the characteristic polynomial (the determinant of the matrix)
1s
1-32 43—t =1 —t =) (1 +t — 2 =3+t
and if we define the H,, by

1
H,t" =
Z 1+t —t2 -3+ t4

then the stated results follow.
In the case of system (3) the characteristic polynomial is

1—t3 =34 =35 —t5 = (1 —t —tH) A+t + 262 + 263 + 1)

and if we define the J,, by

1
Jpt" =
7;) 14t + 262 + 2t3 + t4

then the stated results follow.
In the case of system (4), the characteristic polynomial is

1—4t3 —t5 =1 -t —t3)(1 — wt — **)(1 — @t — T°t?)

where w, @ are cube roots of unity, and it is not necessary to define any subsidiary sequence.
In the case of system (5), the characteristic polynomial is

L—t—22 4283 —t* 4+ 15 = (1 —t =) (1 —t) (1L + ¢t + %)

and if we define the K,, by

1
ZK"tnzl 3
">0 +t+t

the stated results follow.
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In the case of system (6), the characteristic polynomial is
l—t—?2 4+t —tP -5 =1 —t—t) (1 +tH

and if we define the M,, by

1
S -
4
o 141

the stated results follow.
In the case of system (7), the characteristic polynomial is

1—t2 =23 — 2t 4+t 118 = (1 =t —tH)A + ) (1 + 12 = t7)

and if we define the L,, by

then the stated results follow.
Now we turn to the proofs of the explicit formulas for G,,, H,, J,, K,, L, and M,,.
First let us dispense with the M,,. We have

1
ZMnt": — 1t 8.

It follows that {M,} = {1,0,0,0,—1,0,0,0,1,0,---}, and it is easy to check that the stated
formula behaves in precisely the same manner.
To deal with the K,, and L,,, we begin with the factorizations of the relevant cubics,

L+t+t°=(1+ St <1 — % cos at + %ﬁ) = (1+5t) (1 - %é’%) (1 — %W’%)

and

14123 = (1 - %t) (1 — 2V/S cos Bt + St2) - (1 - %t) (1 — v/Se't) (1 - \/§e—“’t) :

both of which are easily verified. Use of partial fractions then yields the stated formulas.
(Factorization of the cubics is fairly standard — I used Cardano’s method.)

Finally we come to the G,,, H, and J,.

Observe that the product of the three denominators is, most remarkably, a function of 3.

(1—2t+22 P+t A+t — 12 =3 A+t + 202 26 +t4) = 1+ 3 + 565 — 19 1412,
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Thus we have

S G = 1 142t 262+ 267 4t — 265 — 0 447 + 48
eSS T e e 1+ 13+ 56 —¢9 +¢12 ’
S i, = 1 1t 422 — P+t 17 4 20 417 448

e e e 143 + 516 — 9 4 12
St = 1 1=t =22t - 267 4205 — 27 48
ST Tt 2t 1+ 13+ 56 — 9 + 112 '

It follows that

1+2t—t2 2+t+t2
Gntn: ) Gn tn: )
r;) ’ 1+ t+5t2—3+t4 ;0 st 1+t+5t2—3+t4

2 — 2t — ¢2 1 —t 4217
G tn: ) H tn: ’
nz>0 3n—+2 1+t+5t2—t3+t4 nz>0 3n 1+t+5t2—t3+t4
14 t4¢2 2+t +t2
Hap gt = Hzppot" =
?;) 3n+1 1—|—t—|—5t2—t3+t4, 7;) 3n+2 1+t+5t2_t3+t47
1+ 2t 4 2t —1+1t— 217
J tn: ) J tn: ’
nZ% T It 4562 — 13 4 ¢ Z% T Tt 512 — 63 4 ¢

S st = —1— 2t +¢2
SR T B2 — 3 A

from which we can read off the stated relations between the G,,, H,, and J,.
Indeed, we see that the G,,, H,, and J, can all be written in terms of another sequence,
the P,, defined by

1

Pt" = :
Z " 1+t+52 13+t
n>0
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However, we have chosen to give the G,, and J, in terms of the H,,, simply because the
characteristic polynomial of the H,, has a neat factorization,

L+t —t* =13 +t* = (1 — 2Rcos Ot + R*t*)(1 — 2r cos ¢t + r2t?)
= (1 — Re"t)(1 — Re™t)(1 — re®t)(1 — re™%t)

where R, r,0 and ¢ are given above.

The expression for the H,, follows via partial fractions.

One final comment: Factorization of the quartic was quite a challenge for me. I began
with the observation that

l+t—t* =3+t =1 —wt — A —wt — t?),

where w, @ are cube roots of unity.
In closing, I would like to acknowledge the help given me by James A. Sellers in discovering
the relations between the G,,, H,, and .J,. These discoveries greatly simplified the paper.
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