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ABSTRACT

Purely combinatorial methods are used to show that Stirling numbers, defined combina-
torially, satisfy orthogonality relations. The proofs are extended to several generalizations of
Stirling numbers.

1. INTRODUCTION

Stirling numbers are probably most simply defined as the coefficients in an expansion of
non-negative integral powers of a variable in terms of factorial powers, or vice-versa:

(x)n =
n∑

k=0

s(n, k)xk, n ≥ 0, (1)

xn =
n∑

k=0

S(n, k)(x)k, n ≥ 0, (2)

where

(x)n = x(x− 1) . . . (x− n + 1), n ≥ 1,

(x)0 = 1.

The numbers s(n, k) and S(n, k) are, in the notation of Riordan [12], Stirling numbers of the
first and second kind, respectively. The signless Stirling number of the first kind, c(n, k), is
defined by

c(n, k) = (−1)n−ks(n, k). (3)

By substituting (1) into the right-hand side of (2), (or vice-versa), changing the order of
summation, and equating coefficients of xl, (or (x)l), we obtain the following identities:

n∑
k=l

S(n, k)s(k, l) = δnl, (4)

n∑
k=l

s(n, k)S(k, l) = δnl, (5)
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where δnl is the Kronecker delta symbol.
Alternative combinatorial definitions of Stirling numbers may be found in, for example,

Riordan [12, pages 71, 99]:
(i) the signless Stirling number of the first kind, c(n, k), is the number of permutations of the

set {1, 2, . . . , n} with k cycles;
(ii) the Stirling number of the second kind, S(n, k), is the number of partitions of the set

{1, 2, . . . , n} into k subsets.
The purpose of this article is, firstly, to provide a combinatorial derivation of the identities

(4) and (5), starting from these combinatorial definitions. This is described in section 2.
A number of generalizations of (1) and (2) can be unified within the context of weighted

Stirling pairs (see Hsu and Shiue [9], Yu [14] and Corcino [7]; for a review, see section 6 of
Branson [2]). If the generalized factorial power (x|a)n is defined by

(x|a)n = x(x− a)(x− 2a) . . . (x− na + a), n ≥ 1,

(x|a)0 = 1,

then we may define a weighted Stirling pair, S(n, k; a, b, c) and S(n, k; b, a,−c), by

(x|a)n =
n∑

k=0

S(n, k; a, b, c)(x− c|b)k, (6)

(x|b)n =
n∑

k=0

S(n, k; b, a,−c)(x + c|a)k. (7)

Clearly, the standard Stirling numbers s(n, k) and S(n, k) are equal to the pair S(n, k; 1, 0, 0)
and S(n, k; 0, 1, 0). We can, in fact, restrict our attention to weighted Stirling pairs with a or
b equal to 1 because of the following relationship, which follows from (6) or (7):

S(n, k; a, b, c) = an−kS

(
n, k; 1,

b

a
,
c

a

)
= bn−kS

(
n, k;

a

b
, 1,

c

b

)
. (8)

The functions (x|a)l, l = 0, 1, . . . , n, form a basis for the space of polynomials of degree
less than or equal to n. Therefore, by substituting (7) into the right-hand side of (6), changing
the order of summation and equating coefficients of (x|a)l, we obtain the orthogonality relation

n∑
k=l

S(n, k; a, b, c)S(k, l; b, a,−c) = δnl. (9)

Putting a = 0, b = 1, c = 0 or a = 1, b = 0, c = 0 we recover (4) or (5) respectively. In section 3
we generalize the discussion of section 2 by giving a combinatorial proof of (9), starting from
combinatorial definitions of the Stirling numbers, for several choices of the parameters a, b and
c.
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2. STIRLING NUMBERS OF THE FIRST AND SECOND KINDS

We first rephrase the definitions (i) and (ii) in section 1 by expressing them in terms of the
number of ways we can partition a set into (non-empty) subsets, and then order the elements
of the resulting subsets in certain specified ways. We talk of “partitioning a set into ordered
subsets subject to such-and-such restriction”.

Define Pnk to be the set of all partitions of the set {1, 2, . . . , n} into k ordered subsets
subject to the restriction that the smallest element of each subset appears as its first element.
The number of such partitions is equal to the number of partitions into k cyclically ordered
subsets, so, by (i) above, we see that |Pnk|, the number of elements in Pnk, is equal to c(n, k).

Define Qnk to be the set of all partitions of the set {1, 2, . . . , n} into k ordered subsets
subject to the restriction that the elements of each subset appear in increasing order of magni-
tude. (We call these ascending subsets.) The number of such partitions is equal to the number
of partitions into k unordered subsets, so, by (ii) above, |Qnk| is equal to S(n, k).

It follows immediately from the combinatorial definitions that

s(n, n) = 1, S(n, n) = 1, n ≥ 0, (10)

so that (4) and (5) are trivially satisfied when n is equal to l. It remains to establish these
identities in cases of inequality.
Combinatorial proof of identity (4): We say that a partition belonging to the set Pnl

possesses property Au, (u = 1, 2, . . . , n), if u is not the first element of the subset to which
it belongs and if the element immediately to its left is less than u. (Note that no partition
belonging to Pnl possesses property A1.) For example, the partition {{1, 5, 3, 6}{2, 4}}, be-
longing to P6,2, possesses properties A4, A5 and A6. If n is greater than l then at least one
subset belonging to each partition of Pnl has at least two elements, and so, by the definition
of Pnl, each partition possesses property Au for at least one u (namely, the second element
in any subset that has more than one element). We conclude that the number of members of
Pnl that possess none of the properties Au is zero. Hence by the principle of inclusion and
exclusion [12, page 51] we have, for n greater than l,

|Pnl| −
∑

u

N(Au) +
∑
u<v

N(AuAv)

−
∑

u<v<w

N(AuAvAw) + · · ·+ (−1)n−1N(A2A3 . . . An) = 0, (11)

where N(AuAv . . . ) is the number of elements of Pnl that possess property Au and property
Av and property . . . .

We have already seen that |Pnl|, the first term in (11), is equal to c(n, l). As a first step in
evaluating the second term in (11), we choose a particular value of u, and split {1, 2, . . . , n} into
n−1 ‘building blocks’, namely n−2 singlets and an ascending doublet whose second element is
u. We can now assemble these n−1 building blocks into l larger subsets whose smallest elements
are at the left. The definition of Pnk shows that this can be done in c(n − 1, l) ways, and the
result is an element of Pnl which necessarily possesses property Au. For example, each of the
sets of building blocks {{1, 3}{2}{4}{5}{6}} and {{1}{2, 3}{4}{5}{6}} can be assembled in
c(5, 2) ways into elements of P6,2, such as {{1, 3, 5}{2, 6, 4}} or {{1, 6, 2, 3, 5}{4}} respectively,
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which possess property A3. Conversely, given any element of Pnl possessing property Au, we
can uniquely decompose it into its n − 1 building blocks by putting a pair of braces, }{, in
front of every element except u. Since the doublet in any set of building blocks is ascending,
it follows that the number of ways we can choose the sets of building blocks, taking account
of all possible sets of blocks with u as the second element of an ascending doublet, and all
possible values of u, is |Qn,n−1|, which is equal to S(n, n− 1). Hence the second term in (11)
is equal to −S(n, n− 1)c(n − 1, l).

Similarly, when we consider the third term in (11), we choose particular values of u and
v, with u less than v, and construct n − 2 building blocks which are either n − 4 singlets and
two ascending doublets whose second elements are u and v, or n− 3 singlets and an ascending
triplet whose second and third elements are respectively u and v. Each set of these n − 2
building blocks may be assembled in c(n− 2, l) ways into l subsets forming an element of Pnl

which has both property Au and property Av. For example, each of the sets of building blocks
{{1, 2}{3, 4}{5}{6}} and {{1, 2, 4}{3}{5}{6}} can be assembled in c(4, 2) ways into elements
of P6,2, such as {{1, 2, 6, 5}{3, 4}} or {{1, 2, 4, 5, 6}{3}} respectively, which possess properties
A2 and A4. There is a one-one correspondence between a particular choice of building blocks,
for some choice of u and v, and an element of Qn,n−2. Hence the number of different sets of
building blocks is S(n, n− 2), and the third term in (11) is S(n, n− 2)c(n − 2, l).

We continue in the same fashion. If we wish to combine the j properties Au1 , Au2 , . . . , Auj
,

where 2 ≤ u1 < u2 < · · · < uj ≤ n, there are n− j building blocks which are either singlets or
ascending subsets whose non-leading elements are u1, u2, . . . , uj . These can be combined to
give elements of Pnl with properties Au1 , Au2 , . . . , Auj

: one must simply arrange that, within
every one of the l subsets formed from the building blocks, the block with the smallest left-
hand element appears at the left. It follows that the number of ways of arranging the n − j
building blocks is c(n − j, l). Conversely, given any element of Pnl possessing the properties
Au1 , Au2 , . . . , Auj , we can uniquely decompose it into its n − j building blocks by putting a
pair of braces in front of all elements except u1, u2, . . . , uj . The number of different sets of
building blocks, totalled over all values of u1, u2, . . . , uj , is S(n, n − j), so the (j + 1)th term
in (11) is (−1)jS(n, n− j)c(n − j, l).

An element of Pnl cannot possess simultaneously more than n − l properties of type Au,
so the process terminates at that stage; there are then l building blocks which themselves form
the l subsets of an element of Pnl. The subsequent terms in (11) are therefore equal to zero.
Hence we can write equation (11) as

c(n, l)− S(n, n− 1)c(n − 1, l) + S(n, n− 2)c(n − 2, l) + · · ·+ (−1)n−lS(n, l)c(l, l) = 0.

Using (10) and (3) we see that this is equivalent to (4) in the case where n is not equal to l.
Combinatorial proof of identity (5): We say that a partition belonging to the set Pnl

possesses property Bu, (u = 1, 2, . . . , n), if u is not the first element of the subset to which it
belongs and if all the elements to its right in the subset (if any) are greater than u. (Again
we note that no partition belonging to Pnl possesses property B1.) For example, the partition
{{1, 3, 6, 5}{2, 4}}, belonging to P6,2, possesses properties B3, B4 and B5. If n is greater than
l then at least one subset belonging to each partition of Pnl has at least two elements, and, if
the rightmost element of this subset is v, say, then that partition possesses property Bv. We
conclude that the number of members of Pnl that possess none of the properties Bu is zero.
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Hence, again using the principle of inclusion and exclusion, and with a similar notation to
(11), we have

|Pnl| −
∑

u

N(Bu) +
∑
u<v

N(BuBv)

−
∑

u<v<w

N(BuBvBw) + · · ·+ (−1)n−1N(B2B3 . . . Bn) = 0. (12)

We now assemble elements of Pnl using a different set of building blocks. To evaluate
the second term in (12), we first, for a given u, split {1, 2, . . . , n} into l + 1 building blocks,
each of which has its smallest element at the left; one such smallest element must be chosen
to be u. We can now assemble these l + 1 building blocks into l larger subsets by joining the
block beginning with u to the right-hand end of one of the other blocks whose first element
is less than u. The result is an element of Pnl which necessarily possesses property Bu. For
example, each of the sets of building blocks {{1, 6}{2, 4}{3, 5}} and {{1, 2}{3, 5, 4}{6}} can be
assembled into elements of P6,2, such as {{1, 6, 3, 5}{2, 4}} or {{1, 2, 3, 5, 4}{6}} respectively,
which possess property B3. Conversely, given any element of Pnl possessing property Bu,
we can uniquely decompose it into its l + 1 building blocks by putting a pair of braces, }{,
immediately before u. Considering all possible sets of building blocks where u is at the left
of one block, and all possible values of u, the total number of ways we can choose the sets of
building blocks is |Pn,l+1|, which is equal to c(n, l+1). In assembling each set of l+1 building
blocks into l larger blocks, the leftmost elements of the joined blocks increase from left to right.
It follows that a given set of blocks can be assembled in |Q(l + 1, l)| different ways. Hence the
second term in (12) is equal to −c(n, l + 1)S(l + 1, l).

For the third term in (12), we choose values of u and v, with u less than v, and we construct
l + 2 building blocks (each with its smallest element at the left), two of which start with the
elements u and v. These may be assembled into l subsets forming an element of Pnl either
by joining the blocks starting with u and v to the right-hand ends of two other blocks whose
leftmost elements are less than u and v respectively, or by joining first the block beginning with
u and then the block beginning with v to the right-hand end of a block whose first element
is less than u. The resulting element of Pnl has both property Bu and property Bv. For
example, each of the sets of building blocks {{1}{2, 5}{3}{4, 6}} and {{1}{2}{3, 6, 5}{4}} can
be assembled into elements of P6,2, such as {{1, 3}{2, 5, 4, 6}} or {{1, 3, 6, 5, 4}{2}} respectively,
which possess properties B3 and B4. A total of c(n, l + 2) choices of building blocks may each
be combined in S(l + 2, l) ways, so the third term in (12) is c(n, l + 2)S(l + 2, l).

In general, when considering properties Bu1 , Bu2 , . . . , Buj
, where 2 ≤ u1 < u2 < · · · <

uj ≤ n, the building blocks are l + j subsets, each with its smallest element at the left; j of
these subsets have u1, u2, . . . , uj as their smallest (and therefore leftmost) elements. We now
take, in turn, the subsets headed by u1, u2, . . . , uj and attach them to the right-hand end of
one of the other l subsets in such a way that the leftmost elements of the blocks joined to
form a larger subset increase from left to right. The outcome is a member of Pnl possessing all
the properties Bu1 , Bu2 , . . . , Buj

. As before, any member of Pnl possessing all the properties
Bu1 , Bu2 , . . . , Buj can be uniquely decomposed into its l + j building blocks by putting a pair
of braces in front of u1, u2, . . . , uj . Taking account of all values of u1, u2, . . . , uj , the building
blocks can be chosen in c(n, l+j) ways, and any choice of l+j building blocks can be assembled
in S(l + j, l) ways. Hence the (j + 1)th term in (12) is equal to (−1)jc(n, l + j)S(l + j, l).
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No element of Pnl can possess simultaneously more than n− l properties of type Bu so the
procedure terminates when l+ j equals n (when the building blocks are all singlets). Recalling
that |Pnl| is equal to c(n, l), we can therefore write equation (12) as

c(n, l)− c(n, l + 1)S(l + 1, l) + c(n, l + 2)S(l + 2, l) + · · ·+ (−1)n−lc(n, n)S(n, l) = 0.

Equations (10) and (3) show that, when n is greater than l, this is equivalent to (5).
For another combinatorial proof of (4) and (5), see reference [1].

3. WEIGHTED STIRLING PAIRS

Degenerate Stirling numbers, C-numbers and Lah numbers: Carlitz [4] defined the
degenerate Stirling numbers as the pair S(n, k; a, 1, 0) and S(n, k; 1, a, 0) (or, in his notation,
S(n, k|a) and (−1)n−kS1(n, k|a)). These are essentially equivalent to the C-numbers of Char-
alambides [6], which are given by

C(n, k, a) = akS(n, k; 1, a, 0).

In order to keep the discussion from becoming too complex, we consider only the particular
case where a = −1. The numbers (−1)kS(n, k; 1,−1, 0) are known as Lah numbers (see [11]
and [12, pages 43-44]). Equation (8) shows that S(n, k;−1, 1, 0) and S(n, k; 1,−1, 0) differ only
by a sign factor:

S(n, k; 1,−1, 0) = (−1)n−kS(n, k;−1, 1, 0). (13)

We first refer to a combinatorial definition of these numbers. Define Rnl to be the set
of all partitions of the set {1, 2, . . . , n} into l ordered subsets. Specializing the discussion of
section 6.2 of reference [2] to the case a = −1 and using (13), we find that

|Rnl| = (−1)n−lS(n, l; 1,−1, 0) = S(n, l;−1, 1, 0). (14)

Since
|Rnn| = 1 = S(n, n; 1,−1, 0) = S(n, n;−1, 1, 0), (15)

it follows that the only non-trivial cases of (9) are those for which n is greater than l. We now
address these cases, using the same form of argument as in section 2. We say that a partition
belonging to the set Rnl possesses property Cu, (u = 1, 2, . . . , n), if u is not the first element
of the subset to which it belongs. For example, the partition {{5, 1, 3, 6}{2, 4}}, belonging to
R6,2, possesses properties C1, C3, C4 and C6. If n is greater than l the principle of inclusion
and exclusion implies that

|Rnl|−
∑

u

N(Cu)+
∑
u<v

N(CuCv)−
∑

u<v<w

N(CuCvCw)+· · ·+(−1)nN(C1C2 . . . Cn) = 0, (16)

where N(CuCv . . . ) is the number of elements of Rnl that possess property Cu and property
Cv and property . . . .

To assemble partitions possessing Cu1 , Cu2 , . . . , Cuj
, where 1 ≤ u1 < u2 < · · · < uj ≤ n,

we construct n − j building blocks which are ordered subsets whose non-leading elements are
u1, u2, . . . , uj . These building blocks are then assembled in all possible orders into l larger sets
forming elements of Rnl that possess properties Cu1 , Cu2 , . . . , Cuj . The number of ways this
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can be done is |Rn−j,l|. For example, each of the sets of building blocks {{1}, {3, 2}, {4}, {6, 5}}
and {{1}, {4, 5, 2}, {3}, {6}} can be assembled in |R4,2| ways into elements of R6,2, such as
{{3, 2, 1}, {4, 6, 5}} or {{6, 1, 4, 5, 2}, {3}} respectively, each of which possess properties C2 and
C5. Conversely, any element of Rnl possessing properties Cu1 , Cu2 , . . . , Cuj can be uniquely
decomposed into its building blocks. Taking account of all values of u1, u2, . . . , uj , the number
of ways we can construct the n−j building blocks is simply the number of ways we can split the
set {1, 2, . . . , n} into n− j ordered subsets, that is to say, |Rn,n−j |. The (j +1)th term in (16)
is therefore (−1)j |Rn,n−j ||Rn−j,l|. It is impossible for more than n− l elements simultaneously
to be non-leading elements of the subsets to which they belong, so equation (16) becomes

|Rnl|+
n−l∑
j=1

(−1)j |Rn,n−j ||Rn−j,l| = 0.

An application of (14) and (15) gives the required orthogonality relations:

n∑
k=l

S(n, k; 1,−1, 0)S(k, l;−1, 1, 0) = 0 =
n∑

k=l

S(n, k;−1, 1, 0)S(k, l; 1,−1, 0), n > l.

Weighted (non-central) Stirling numbers and r-Stirling numbers: A number of au-
thors have discussed weighted Stirling pairs in the case where a = 0. Carlitz’s weighted Stirling
numbers [5], R(n, k, c) and R1(n, k, c), are equal to S(n, k; 0, 1, c) and (−1)n−kS(n, k; 1, 0,−c)
respectively. (The first of these had in fact been used much earlier by Riordan [13]). Koutras’s
non-central Stirling numbers [10] are essentially the same (apart from the (−1)n−k factor)
whereas Broder [3] defined r-Stirling numbers that are equal to S(n − c, k − c; 0, 1, c) and
(−1)n−kS(n − c, k − c; 1, 0,−c).

Suppose that c is a positive integer. Let T c
nk be the set of all partitions of the

set {1, 2, . . . , n} into c distinguishable ‘boxes’ (some or all of which may be empty),
[. . . ]1, [. . . ]2, . . . , [. . . ]c, and k non-empty subsets; in the boxes the elements are ordered in
all possible ways, and in the subsets the elements are ordered with the smallest element ap-
pearing first. For example, a member of T 2

6,2 is {[6, 3]1, [ ]2, {1}, {2, 5, 4}}. Let U c
nk be defined

similarly, except that now the elements in each box and each subset must appear in increasing
order of magnitude. (Using the terminology of section 2, we refer to these as ascending subsets
and ascending boxes.) We can deduce from [5] and [2, section 6.3] the following combinatorial
interpretation of the weighted Stirling numbers:

|T c
nk| = (−1)n−kS(n, k; 1, 0,−c), (17)

|U c
nk| = S(n, k; 0, 1, c). (18)

As usual, we note that
|T c

nn| = |U c
nn| = 1, n ≥ 0. (19)

Our argument now is similar to that of section 2, with due regard being paid to the
existence of the c boxes. We say that a partition belonging to T c

nl possesses property Du,
(u = 1, 2, . . . , n), if, whenever u is in a box, the element immediately to its left (if any) is less
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than u; whenever u is not in a box, u has a smaller element immediately to its left. The usual
arguments, with the usual notation, show that, for n greater than l,

|T c
nl| −

∑
u

N(Du) +
∑
u<v

N(DuDv)

−
∑

u<v<w

N(DuDvDw) + · · ·+ (−1)nN(D1D2 . . . Dn) = 0. (20)

The n−j building blocks (and, possibly, a number of ‘building boxes’) that we use to assemble
partitions possessing properties Du1 , Du2 , . . . , Duj

(where u1 < u2 < . . . < uj) are constructed
by first taking all elements except u1, u2, . . . , uj , and putting them as the first elements of n−j
subsets. We then assign u1, u2, . . . , uj in turn either to these n− j subsets, or to one or more
of the boxes, so as to form ascending subsets and ascending boxes. We take the n− j building
blocks, place some or none of them in boxes, in all possible orders to the right of any elements
already in the boxes, and from the remainder of the building blocks we construct l non-empty
subsets in each of which the smallest element is at the left. This operation can be carried out
in |T c

n−j,l| ways and results in an element of T c
nl having properties Du1 , Du2 , . . . , Duj

. Taking
account of all values of u1, u2, . . . , uj , the building blocks can be chosen in |U c

n,n−j | ways. Once
more, we note that any element of T c

nl having properties Du1 , Du2 , . . . , Duj
can be uniquely

unravelled into its building blocks and building boxes by putting a pair of braces in front of
all elements except u1, u2, . . . , uj . We conclude that∑

u1<...<uj

N(Du1Du2 . . . Duj ) = |U c
n,n−j ||T c

n−j,l|.

Therefore (20) becomes

|T c
nl|+

n−l∑
j=1

(−1)j |U c
n,n−j ||T c

n−j,l| = 0.

Equations (17), (18) and (19) translate this into the orthogonality relation

n∑
k=l

S(n, k; 0, 1, c)S(k, l; 1, 0,−c) = 0, n > l.

In order to derive the orthogonality relation with the Stirling numbers in the reverse
order, we declare that a partition belonging to T c

nl possesses property Eu, (u = 1, 2, . . . , n), if,
whenever u is in a box, all the elements to its right (if any) are greater than u; whenever u is
not in a box, u has an element immediately to its left, and, again, all the elements to its right
(if any) are greater than u. Then, for n greater than l,

|T c
nl|−

∑
u

N(Eu)+
∑
u<v

N(EuEv)−
∑

u<v<w

N(EuEvEw)+· · ·+(−1)nN(E1E2 . . . En) = 0. (21)

The building boxes and the l + j building blocks that we use to assemble partitions possess-
ing properties Eu1 , Eu2 , . . . , Euj

are constructed by first putting all elements u1, u2, . . . , uj

together with l of the remaining elements as the first elements of l+j subsets. Each remaining
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element is then assigned either to one of these l + j subsets whose leftmost element is less
than it, or to one or more of the boxes, arranged in all possible orders. Some or none of
the building blocks headed by u1, u2, . . . , uj are placed in boxes, to the right of any elements
already there, in such a way that the leftmost elements of the building blocks within any box
increase from left to right; the remainder of the building blocks headed by u1, u2, . . . , uj are,
in turn, adjoined to the right of one of the other l building blocks in such a way that, again,
the leftmost elements of the building blocks within any subset increase from left to right. This
assembly of an element of T c

nl having properties Eu1 , Eu2 , . . . , Euj
can be uniquely inverted

by putting a pair of braces in front of u1, u2, . . . , uj . Summing over all values of u1, u2, . . . , uj

we see that the building blocks can be constructed in |T c
n,l+j | ways, and the building blocks

can then be joined together in |U c
l+j,l| ways. Hence (21) becomes

|T c
nl|+

n−l∑
j=1

(−1)j |T c
n,l+j ||U c

l+j,l| = 0.

Use of equations (17), (18) and (19) leads to the required result

n∑
k=l

S(n, k; 1, 0,−c)S(k, l; 0, 1, c) = 0, n > l.

Degenerate weighted Stirling numbers: Howard [8] combined degenerate and weighted
Stirling numbers to give degenerate weighted Stirling numbers, which he denoted by S(n, k; c|a)
and S1(n, k; a + c|a). These are equal to S(n, k; a, 1, c) and (−1)n−kS(n, k; 1, a,−c). As in the
first part of this section, we will restrict our discussion to the case a = −1. These numbers
are related by (8):

S(n, k; 1,−1,−c) = (−1)n−kS(n, k;−1, 1, c).

The combinatorial interpretation is obtained by modifying the discussion for degenerate Stir-
ling numbers by the addition of c boxes, as in the previous subsection. Let V c

nk be the set of
all partitions of the set {1, 2, . . . , n} into c distinguishable boxes (some or all of which may be
empty), and k non-empty subsets; in the boxes and in the subsets the elements are ordered in
all possible ways. Then, (see section 6.4 of [2])

|V c
nk| = (−1)n−kS(n, k; 1,−1,−c) = S(n, k;−1, 1, c). (22)

A partition is said to possess property Fu if u is in a box or if it is not the first element in a
subset. The n− j building blocks (and, possibly, some building boxes) that we use to assemble
partitions possessing properties Fu1 , Fu2 , . . . , Fuj

are in this case constructed by first taking
all elements except u1, u2, . . . , uj , and putting them as the first elements of n− j subsets. We
then assign u1, u2, . . . , uj in turn either to these n− j subsets, or to one or more of the boxes,
in all possible orders. We take the n− j building blocks, place some or none of them in boxes,
in all possible orders to the right of any elements already in the boxes, and from the remainder
of the building blocks we construct l non-empty subsets by joining the building blocks in all
possible orders. This (invertible) operation can be carried out in |V c

n−j,l| ways and it leads
to an element of V c

nl possessing properties Fu1 , Fu2 , . . . , Fuj . Taking account of all values of
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u1, u2, . . . , uj , the building blocks can be constructed in |V c
n,n−j | ways. Arguing as in previous

subsections, we conclude that∑
u1<...<uj

N(Fu1Fu2 . . . Fuj
) = |V c

n,n−j ||V c
n−j,l|,

so that

|V c
nl|+

n−l∑
j=1

(−1)j |V c
n,n−j ||V c

n−j,l| = 0, n > l.

Using the fact that |V c
nn| = 1 together with (22) we obtain

n∑
k=l

S(n, k; 1,−1,−c)S(k, l;−1, 1, c) = δnl =
n∑

k=l

S(n, k;−1, 1, c)S(k, l; 1,−1,−c).
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