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ABSTRACT

It is known that with a very small number of exceptions, for a term of a Lehmer sequence
{Un(

√
R,Q)} to be prime its index must be prime. For example, F4 = U4(1,−1) = 3 is

prime. Also, Un(1, 2) is prime for n = 6, 8, 9, 10, 15, 25, 25, 65, while Vn(1, 2) is prime for
n = 9, 12, and 20. This criterion extends to the companion Lehmer sequences {Vn(

√
R,Q)},

with the exception that primality may occur if the index is a power of two. Furthermore,
given an arbitrary prime p or any positive integer k, there does not exist an explicit means for
determining whether Up, Vp, or V2k is prime. In 2000, V. Drobot provided conditions under
which if p and 2p−1 are prime then Fp is composite. A short while later, L. Somer considered
primes of the form 2p ± 1, as well as generalized Drobot’s theorem to the Lucas sequences.
Most recently, J. Jaroma extended Somer’s findings to the companion Lucas sequences. In
this paper, we shall generalize all of the aforementioned results from the Lucas sequences to
the Lehmer sequences.

1. INTRODUCTION

In [1], V. Drobot introduced the following theorem. It gave a set of sufficient conditions
for a Fibonacci number of prime index to be composite.
Theorem 1 (Drobot): Let p > 7 be a prime satisfying the following two conditions:

1. p ≡ 2 (mod 5) or p ≡ 4 (mod 5)
2. 2p− 1 is prime

Then, Fp is composite. In fact, (2p− 1)|Fp.
In [6], L. Somer generalized the above theorem to the Lucas sequences. Let P and Q be

nonzero relatively prime integers. The Lucas sequences {Un(P,Q)} are defined as

Un+2 = PUn+1 −QUn, U0 = 0, U1 = 1, n ∈ {0, 1, . . . }. (1)

The companion Lucas sequences {Vn(P,Q)} are given by

Vn+2 = PVn+1 −QVn, V0 = 2, V1 = P, n ∈ {0, 1, . . . }. (2)

Furthermore, if we let D = P 2−4Q denote the discriminant of the characteristic equation
of (1) and (2), then Somer’s extension of Theorem 1 may be stated as
Theorem 2 (Somer): Let {U(P,Q)} be a Lucas sequence and p be an odd prime such that
2p± 1 6| Q.

1. If 2p− 1 is a prime,
(

D
2p−1

)
= −1 and

(
Q

2p−1

)
= 1, then 2p− 1|Up.

2. If 2p + 1 is a prime,
(

D
2p+1

)
=

(
Q

2p+1

)
= 1, then 2p + 1|Up.

Somer’s result was originally given in [6, pg. 435] in terms of the second-order linear
recurrence satisfying un+2 = aun+1 + bun, u0 = 0, u1 = 1, and a, b ∈ Z. It was also noted in
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[2] that in light of the second line of Table 1 on pg. 373 of [5], if the hypotheses of the above
theorem are strengthened to include the conditions that 2p ± 1 6| P and gcd(P,Q) = 1, then
Theorem 2 can be reformulated to provide necessary and sufficient conditions for 2p± 1 to be
prime. Also, found in [2] are the following results for the companion Lucas sequences.
Theorem 3: Let {V (P,Q)} be a companion Lucas sequence and let p be an odd prime such
that (2p± 1) 6| PQ.

1. Let
(

Q
2p−1

)
=

(
D

2p−1

)
= −1. Then, 2p− 1|Vp if and only if 2p− 1 is prime.

2. Let
(

Q
2p+1

)
= −1 and

(
D

2p+1

)
= 1. Then, 2p + 1|Vp if and only if 2p + 1 is prime.

2. THE RESULTS

We shall now extend all of the aforementioned results to the larger family of Lehmer
sequences. To this end, let p be of the arbitrary form

p = 2αpα1
1 pα2

2 · · · pαk

k ± 1, (3)

where, α ≥ 1, and for 1 ≤ i ≤ k, αi ∈ {0, 1, . . . } and the pi are distinct odd primes. Any odd
p may always be described in either of the two forms described by (3). Now, letting R and
Q be any pair of relatively prime integers, the Lehmer sequences {Un(

√
R,Q)} are recursively

defined as

Un+2(R,Q) =
√

RUn+1 −QUn, U0 = 0, U1 = 1, n ∈ {0, 1, . . . }. (4)

Also, the companion Lehmer sequences {Vn(
√

R,Q)} are similarly given by

Vn+2(R,Q) =
√

RVn+1 −QVn, V0 = 2, V1 =
√

R, n ∈ {0, 1, . . . }. (5)

As Lehmer had declared in [3], we say that m divides
√

R when and only when m2 | R.
Let ∆ = R−4Q be the discriminant of the characteristic equation of (4) and (5), the following
Legendre symbols will be used in this paper.

σ =
(

R
p

)
, τ =

(
Q
p

)
, ε =

(
∆
p

)
.

Finally, the rank of apparition of a number N is the index of the first term of the underlying
sequence that contains N as a factor. We shall let ω(p) represent the rank of apparition of p in
{Un(

√
R,Q)} and λ(p) denote the rank of apparition of p in {Vn(

√
R,Q)}. Our forthcoming

generalization will require the following lemmata found in [3].
Lemma 1: GCD(Un, Vn) = 1 or 2.
Lemma 2: If N ± 1 is the rank of apparition of N , then N is prime.
Lemma 3: If p 6| RQ then p | Up−σε.
Lemma 4: Let p 6| RQ. Then, p | U p−σε

2
if and only if σ = τ .

Lemma 5: If the rank of apparition of p, ω(p), is odd then p 6| Vn(R,Q) for any value of n. If
ω(p) is even, say 2k, then p | V(2n+1)k for all n and no other term of the sequence may contain
p as a factor.
Lemma 6: Un is divisible by p if and only if n = kω(p).
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We now establish our results.
Theorem 4: Let {Un(

√
R,Q)} be a Lehmer sequence, α ≥ 1, for 1 ≤ i ≤ k assume that

αi ≥ 0, p = 2αpα1
1 pα2

2 · · · pαk

k − 1 is prime, and gcd(2p+1, RQ∆) = 1. For the following Jacobi

symbols, let either
(

R
2p+1

)
=

(
∆

2p+1

)
=

(
Q

2p+1

)
= 1 or

(
R

2p+1

)
=

(
∆

2p+1

)
=

(
Q

2p+1

)
= −1. If

2p + 1 = 2α+1pα1
1 pα2

2 · · · pαk

k − 1 is prime, then 2α+1pα1
1 pα2

2 · · · pαk

k − 1 | U2αp
α1
1 p

α2
2 ···pαk

k
−1.

Proof: Let 2p + 1 = 2α+1pα1
1 pα2

2 · · · pαk

k − 1 be prime. Now, σε =
(

R
2p+1

) (
∆

2p+1

)
= 1.

Hence, from Lemma 3, 2α+1pα1
1 pα2

2 · · · pαk

k − 1 | U2α+1p
α1
1 p

α2
2 ···pαk

k
−2. Furthermore, since σ = τ ,

by Lemma 4, 2α+1pα1
1 pα2

2 · · · pαk

k − 1 | U2αp
α1
1 p

α2
2 ···pαk

k
−1.

Theorem 5: Let {Un(
√

R,Q)} be a Lehmer sequence, α ≥ 1, for 1 ≤ i ≤ k assume that
αi ≥ 0, p = 2αpα1

1 pα2
2 · · · pαk

k +1 is prime, and gcd(2p− 1, RQ∆) = 1. For the following Jacobi

symbols, let
(

R
2p−1

)
= −

(
∆

2p−1

)
=

(
Q

2p−1

)
= 1 or

(
R

2p−1

)
= −

(
∆

2p−1

)
=

(
Q

2p−1

)
= −1. If

2p− 1 = 2α+1pα1
1 pα2

2 · · · pαk

k + 1 is prime, then 2α+1pα1
1 pα2

2 · · · pαk

k + 1 | U2αp
α1
1 p

α2
2 ···pαk

k
+1.

Proof: Let 2p − 1 = 2α+1pα1
1 pα2

2 · · · pαk

k + 1 be prime. Since σε = −1, it follows that
2α+1pα1

1 pα2
2 · · · pαk

k +1 | U2α+1p
α1
1 p

α2
2 ···pαk

k
+2. Finally, as σ = τ , we have 2α+1pα1

1 pα2
2 · · · pαk

k +1 |
U2αp

α1
1 p

α2
2 ···pαk

k
+1.

Let N = qβ1
1 qβ2

2 · · · qβr
r be any odd composite number where qi < qj whenever i < j,

gcd(N,QD) = 1, and UN−ε(N) ≡ 0 (mod N), where ε(N) denotes the Jacobi symbol,
(

D
N

)
.

Then, N is a Lucas pseudoprime for {Un(P,Q)}. Furthermore, N is called a Lucas
d-pseudoprime provided that there exists a Lucas sequence {Un(P,Q)} satisfying
gcd(N,PQD) = 1, where N is a pseudoprime for {Un(P,Q)} and ω(N) = N−ε(N)

d is the rank
of apparition of N in {Un(P,Q)}. Moreover, we say that n is a Lehmer d-pseudoprime if there
exists a Lehmer sequence {Un(

√
R,Q)} satisfying gcd(N,RQ∆) = 1: ω(N) = N−σ(N)ε(N)

d ,
where σ(N) and ε(N) denote the Jacobi symbols (R/N) and (∆/N), respectively. It follows
from results found in [3] and from Chapter 5 in [4] that an odd composite integer N is a
Lehmer d-pseudoprime if and only if it is a Lucas d-pseudoprime. Hence, If we consider the
work of Somer, who in [5] showed that for any fixed d: 4 6| d, there exists only a finite number
of Lucas d-pseudoprimes, then the statements of Theorems 4 and 5 are able to be strengthened
to necessary and sufficient ones. For this purpose, we note that if d = 2, then the only Lucas
(and hence, Lehmer) 2-pseudoprime is 32. This occurs, for instance, in {U(4,−1)}.
Remark 1: In [5], Somer illustrates that N = 9 is the only composite number for which
ω(N) = N±1

2 . Therefore, as previously noted, N = 9 is the only Lehmer 2-pseudoprime.
Furthermore, the rank of apparition of 9 is always equal to 4 and never equal to a prime value.
This follows since N = 9 is a square, and so, σ(N) = ε(N) = 1 whenever gcd(9, R∆) = 1.
Thus, for any Lehmer sequence in which 9 is a Lehmer 2-pseudoprime, we have ω(9) =
9−σ(9)ε(9)

2 = 9−1
2 = 4. Therefore, all other N with this particular rank of apparition must be

prime.
We now restate Theorems 4 and 5 to reflect necessary and sufficient conditions for the

primality of 2p± 1 = 2α+1pα1
1 pα2

2 · · · pαk

k ± 1. The demonstration we give for Theorem 6 is for
necessity only. The sufficiency portion follows from Theorem 4. The proof of Theorem 7 is
similar and omitted.
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Theorem 6: Let {Un(
√

R,Q)} be a Lehmer sequence, α ≥ 1, for 1 ≤ i ≤ k assume that

αi ≥ 0, p = 2αpα1
1 pα2

2 · · · pαk

k −1 is prime, and gcd(2p+1, RQ∆) = 1. Let
(

R
2p+1

)
=

(
∆

2p+1

)
=(

Q
2p+1

)
= 1 or

(
R

2p+1

)
=

(
∆

2p+1

)
=

(
Q

2p+1

)
= −1. Then, 2p + 1 = 2α+1pα1

1 pα2
2 · · · pαk

k − 1 is

prime if and only if 2α+1pα1
1 pα2

2 · · · pαk

k − 1 | U2αp
α1
1 p

α2
2 ···pαk

k
−1.

Proof: (⇐) In each case, let 2α+1pα1
1 pα2

2 · · · pαk

k − 1 | U2αp
α1
1 p

α2
2 ···pαk

k
−1. Since the index

of U2αp
α1
1 p

α2
2 ···pαk

k
−1 is prime and equal to (2α+1p

α1
1 p

α2
2 ···pαk

k
−1)−1

2 , we have ω(2α+1pα1
1 pα2

2 · · · pαk

k

−1) = 2αpα1
1 pα2

2 · · · pαk

k − 1. Therefore, by Remark 1, 2α+1pα1
1 pα2

2 · · · pαk

k − 1 is prime.

Theorem 7: Let {Un(
√

R,Q)} be a Lehmer sequence, α ≥ 1, for 1 ≤ i ≤ k assume that

αi ≥ 0, p = 2αpα1
1 pα2

2 · · · pαk

k +1 is prime, and gcd(2p−1, RQ∆) = 1. Let
(

R
2p−1

)
= −

(
∆

2p−1

)
=(

Q
2p−1

)
= 1 or

(
R

2p−1

)
= −

(
∆

2p−1

)
=

(
Q

2p−1

)
= −1. Then, 2p− 1 = 2α+1pα1

1 pα2
2 · · · pαk

k + 1 is

prime if and only if 2α+1pα1
1 pα2

2 · · · pαk

k + 1 | U2αp
α1
1 p

α2
2 ···pαk

k
+1.

Theorems 6 and 7 will now be extended to the companion Lehmer sequences after offering
a comment on a connection between Lehmer’s original proof of the Lucas-Lehmer test given
in [3] and establishing a primality test for numbers of the form 2n ± 1 using the companion
Lehmer sequences, in general.
Remark 2: The Lucas-Lehmer test states that 2n − 1 is prime if and only if 2n − 1 divides
the (n − 1)st term of the sequence, 4, 14, 194, 37634, . . . , Sk, . . . , where, Sk = S 2

k−1 − 2.
Equivalently, the terms of the described sequence are those of the companion Lehmer sequence
{Vn(

√
2, 1)} with indices equal to 2k. Hence, we may restate the said result as, 2n−1 is prime

if and only if 2n − 1 | V2n−1(
√

2,−1). Moreover, based on the proof of the result given in [3],
we may also infer that if n = 2k for some k ≥ 1, then 2n± 1 is prime if and only if 2n± 1 | Vn,

when
(

R
2n±1

) (
Q

2n±1

)
= −1. Finally, when n = 2k and 2n± 1 is a prime, then 2n± 1 is either

a Mersenne prime (for the case 2n− 1) or a Fermat prime (for the case 2n + 1).
Theorem 8: Let {Vn(

√
R,Q)} be a companion Lehmer sequence, α ≥ 0, for 1 ≤ i ≤ k assume

that αi ≥ 0, n = 2αpα1
1 pα2

2 · · · pαk

k − 1, and gcd(2n + 1, RQ∆) = 1. Let
(

R
2n+1

)
=

(
∆

2n+1

)
=

−
(

Q
2n+1

)
= 1 or

(
R

2n+1

)
=

(
∆

2n+1

)
= −

(
Q

2n+1

)
= −1.

1. If n is a prime, then 2n + 1 = 2α+1pα1
1 pα2

2 · · · pαk

k − 1 is prime if and only if
2α+1pα1

1 pα2
2 · · · pαk

k − 1 | V2αp
α1
1 p

α2
2 ···pαk

k
−1.

2. If n = 2α, then 2n + 1 = 2α+1 + 1 is prime if and only if 2α+1 + 1 | V2α .
Proof:
1. As σε = 1, by Lemma 3, 2α+1pα1

1 pα2
2 · · · pαk

k − 1 | U2α+1p
α1
1 p

α2
2 ···pαk

k
−2. Also, since

σ 6= τ , then 2α+1pα1
1 pα2

2 · · · pαk

k − 1 6| U2αp
α1
1 p

α2
2 ···pαk

k
−1. Since 2α+1pα1

1 pα2
2 · · · pαk

k − 2 = 2(2α

pα1
1 pα2

2 · · · pαk

k −1), by Lemma 6, either ω(2α+1pα1
1 pα2

2 · · · pαk

k −1) = 2 or ω(2α+1pα1
1 pα2

2 · · · pαk

k −
1) = 2α+1pα1

1 pα2
2 · · · pαk

k − 2. Now, 2α+1pα1
1 pα2

2 · · · pαk

k − 1 6| R. So, ω(2α+1pα1
1 pα2

2 · · · pαk

k −
1) 6= 2. Thus, ω(2α+1pα1

1 pα2
2 · · · pαk

k − 1) = 2α+1pα1
1 pα2

2 · · · pαk

k − 2, and by Lemma 5,
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λ(2α+1pα1
1 pα2

2 · · · pαk

k − 1) = 2αpα1
1 pα2

2 · · · pαk

k − 1. Therefore, 2α+1pα1
1 pα2

2 · · · pαk

k − 1 |
V2αp

α1
1 p

α2
2 ···pαk

k
−1. Now, let 2α+1pα1

1 pα2
2 · · · pαk

k − 1 | V2αp
α1
1 p

α2
2 ···pkαk−1. Since U2n = UnVn,

it follows that 2α+1pα1
1 pα2

2 · · · pαk

k −1 | U2α+1p
α1
1 p

α2
2 ···pkαk−2. By Lemma 1, 2α+1pα1

1 pα2
2 · · · pαk

k −
1 6| U2αp

α1
1 p

α2
2 ···pkαk−1. So, as ω(2α+1pα1

1 pα2
2 · · · pαk

k − 1) 6= 2, we have ω(2α+1pα1
1 pα2

2 · · · pαk

k −
1) = 2α+1pα1

1 pα2
2 · · · pαk

k − 2. Therefore, by Lemma 2, 2α+1pα1
1 pα2

2 · · · pαk

k − 1 is prime.
2. Let 2m + 1 = 2α+1 + 1 be prime. As σε = 1, by Lemma 3, 2α+1 + 1 | U2α+1 .

Since στ = −1; that is, σ 6= τ , we have 2α+1 + 1 6| U2α . Thus, ω(2α+1 + 1) = 2α+1 and
λ(2α+1 +1) = 2α. Therefore, 2α+1 +1 | V2α . On the other hand, if 2α+1 +1 | V2α , then by the
identity U2n = UnVn, it follows that 2α+1 + 1 | U2α+1 . However, by Lemma 1, 2α+1 + 1 6| U2α .
So, ω(2α+1 + 1) = 2α+1. Therefore, by Lemma 2, 2α+1 + 1 is prime.
Theorem 9: Let {Vn(

√
R,Q)} be a companion Lehmer sequence, α ≥ 0, for 1 ≤ i ≤ k assume

that αi ≥ 0, n = 2αpα1
1 pα2

2 · · · pαk

k + 1, and gcd(2n + 1, RQ∆) = 1. Let
(

R
2n−1

)
= −

(
∆

2n−1

)
=

−
(

Q
2n−1

)
= 1 or

(
R

2n−1

)
= −

(
∆

2n−1

)
= −

(
Q

2n−1

)
= −1.

1. If n is a prime, then 2n − 1 = 2α+1pα1
1 pα2

2 · · · pαk

k + 1 is prime if and only if
2α+1pα1

1 pα2
2 · · · pαk

k + 1 | V2αp
α1
1 p

α2
2 ···pαk

k
+1.

2. If n = 2α, then 2n− 1 = 2α+1 − 1 is prime if and only if 2α+1 − 1 | V2α .

3. A RANK OF APPARITION INTERPRETATION

We say that p has maximal rank of apparition in {Un(
√

R,Q)} provided that ω(p) = p±1.
If p divides the term, say Uq, where q is a prime, then we may necessarily conclude that
ω(p) = q. As a result, Theorems 4 through 9 are easily restated in order that each may
provide a rank of apparition result. Theorems 8A and 9A provide maximal rank of apparition
results.
Theorem 4A: Let {Un(

√
R,Q)} be a Lehmer sequence, α ≥ 1, for 1 ≤ i ≤ k assume that

αi ≥ 0, p = 2αpα1
1 pα2

2 · · · pαk

k − 1 is prime, and gcd(2p + 1, RQ∆) = 1. Let either
(

R
2p+1

)
=(

∆
2p+1

)
=

(
Q

2p+1

)
= 1 or

(
R

2p+1

)
=

(
∆

2p+1

)
=

(
Q

2p+1

)
= −1. If 2α+1pα1

1 pα2
2 · · · pαk

k − 1 is

prime, then ω(2α+1pα1
1 pα2

2 · · · pαk

k − 1) = 2αpα1
1 pα2

2 · · · pαk

k − 1 and λ(2α+1pα1
1 pα2

2 · · · pαk

k − 1)
does not exist.
Theorem 5A: Let {Un(

√
R,Q)} be a Lehmer sequence, α ≥ 1, for 1 ≤ i ≤ k assume that

αi ≥ 0, p = 2αpα1
1 pα2

2 · · · pαk

k +1 is prime and gcd(2p−1, RQ∆) = 1. Let
(

R
2p−1

)
= −

(
∆

2p−1

)
=(

Q
2p−1

)
= 1 or

(
R

2p−1

)
= −

(
∆

2p−1

)
=

(
Q

2p−1

)
= −1. If 2α+1pα1

1 pα2
2 · · · pαk

k + 1 is prime, then

ω(2α+1pα1
1 pα2

2 · · · pαk

k + 1) = 2αpα1
1 pα2

2 · · · pαk

k + 1 and λ(2α+1pα1
1 pα2

2 · · · pαk

k + 1) does not exist.

Theorem 6A: Let {Un(
√

R,Q)} be a Lehmer sequence, α ≥ 1, for 1 ≤ i ≤ k assume that

αi ≥ 0, p = 2αpα1
1 pα2

2 · · · pαk

k −1 is prime, and gcd(2p+1, RQ∆) = 1. Let
(

R
2p+1

)
=

(
∆

2p+1

)
=(

Q
2p+1

)
= 1 or

(
R

2p+1

)
=

(
∆

2p+1

)
=

(
Q

2p+1

)
= −1. Then, 2α+1pα1

1 pα2
2 · · · pαk

k − 1 is prime

⇐⇒ ω(2α+1pα1
1 pα2

2 · · · pαk

k − 1) = 2αpα1
1 pα2

2 · · · pαk

k − 1 and λ(2α+1pα1
1 pα2

2 · · · pαk

k − 1) does not
exist.
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Theorem 7A: Let {Un(
√

R,Q)} be a Lehmer sequence, α ≥ 1, for 1 ≤ i ≤ k assume that

αi ≥ 0, p = 2αpα1
1 pα2

2 · · · pαk

k +1 is prime, and gcd(2p−1, RQ∆) = 1. Let
(

R
2p−1

)
= −

(
∆

2p−1

)
=(

Q
2p−1

)
= 1 or

(
R

2p−1

)
= −

(
∆

2p−1

)
=

(
Q

2p−1

)
= −1. Then, 2α+1pα1

1 pα2
2 · · · pαk

k + 1 is prime

⇐⇒ ω(2α+1pα1
1 pα2

2 · · · pαk

k + 1) = 2αpα1
1 pα2

2 · · · pαk

k + 1 and λ(2α+1pα1
1 pα2

2 · · · pαk

k + 1) does not
exist.
Theorem 8A: Let {Vn(

√
R,Q)} be a companion Lehmer sequence, α ≥ 0, for 1 ≤ i ≤ k

assume that αi ≥ 0, n = 2αpα1
1 pα2

2 · · · pαk

k − 1, and gcd(2n + 1, RQ∆) = 1. Also, let
(

R
2n+1

)
=(

∆
2n+1

)
= −

(
Q

2n+1

)
= 1 or

(
R

2n+1

)
=

(
∆

2n+1

)
= −

(
Q

2n+1

)
= −1.

1. If n is a prime, then 2n + 1 = 2α+1pα1
1 pα2

2 · · · pαk

k − 1 is prime ⇐⇒ ω(2α+1pα1
1 pα2

2

· · · pαk

k − 1) = 2α+1pα1
1 pα2

2 · · · pαk

k − 2 and λ(2αpα1
1 pα2

2 · · · pαk

k − 1) = 2α+1pα1
1 pα2

2 · · · pαk

k − 1.
2. If n = 2α, then 2n+1 = 2α+1+1 is prime ⇐⇒ ω(2α+1+1) = 2α+1 and λ(2α+1+1) =

2α.
Theorem 9A: Let {Vn(

√
R,Q)} be a companion Lehmer sequence, α ≥ 0, for 1 ≤ i ≤ k

assume that αi ≥ 0, n = 2αpα1
1 pα2

2 · · · pαk

k + 1, and gcd(2n + 1, RQ∆) = 1. Also, let
(

R
2n−1

)
=

−
(

∆
2n−1

)
= −

(
Q

2n−1

)
= 1 or

(
R

2n−1

)
= −

(
∆

2n−1

)
= −

(
Q

2n−1

)
= −1.

1. If n is a prime, then 2n − 1 = 2α+1pα1
1 pα2

2 · · · pαk

k + 1 is prime ⇐⇒
ω(2α+1pα1

1 pα2
2 · · · pαk

k + 1) = 2α+1pα1
1 pα2

2 · · · pαk

k + 2 and λ(2α+1pα1
1 pα2

2 · · · pαk

k + 1) =
2αpα1

1 pα2
2 · · · pαk

k + 1.
2. If n = 2α, then 2n−1 = 2α+1−1 is prime ⇐⇒ ω(2α+1−1) = 2α+1 and λ(2α+1−1) =

2α.
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